

WHM, WHML, WHM XL

Energy saving circulation pumps

1 x 230 V

50/60 Hz

ErP
READY

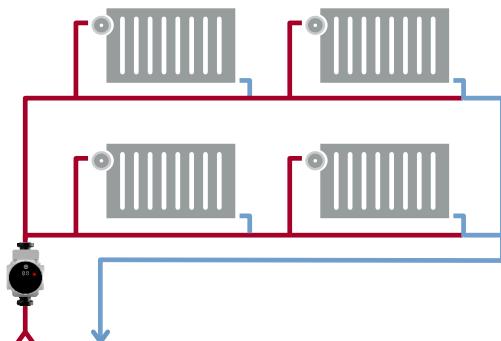
APPLIES TO
EUROPEAN
DIRECTIVE
FOR ENERGY
RELATED
PRODUCTS

1. General information

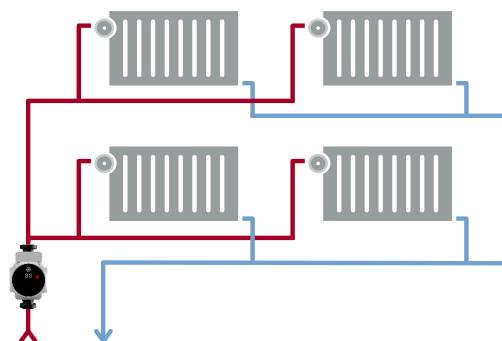
Introduction

This data booklet applies to WASSERAMNN WHM,WHML,WHMXML pump range.

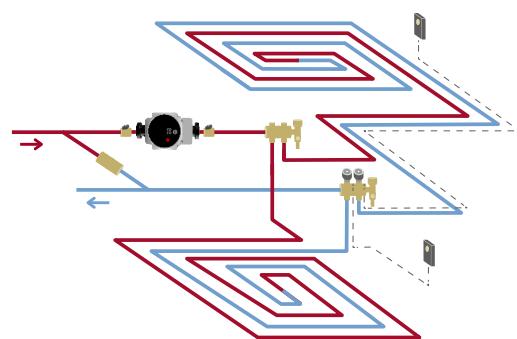
- WHM xx-40/60/70/80/90 AUTO
- WHM xx-40/60/70/80/90 PWM
- WHML xx-105/125/140 AUTO
- WHML xx-105/125/140 PWM
- WHMXML xx-110/120/160/180 AUTO
- WHMXML xx-110/120/160/180 PWM

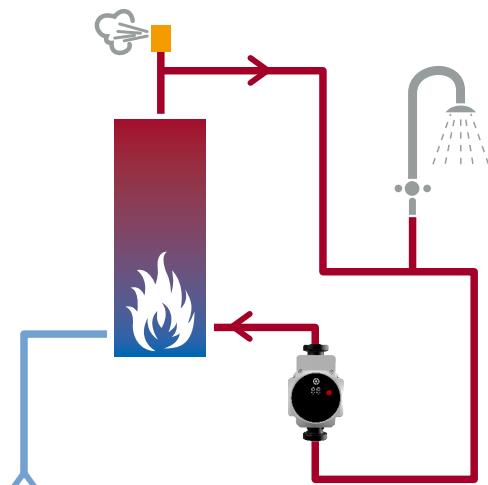

System applications

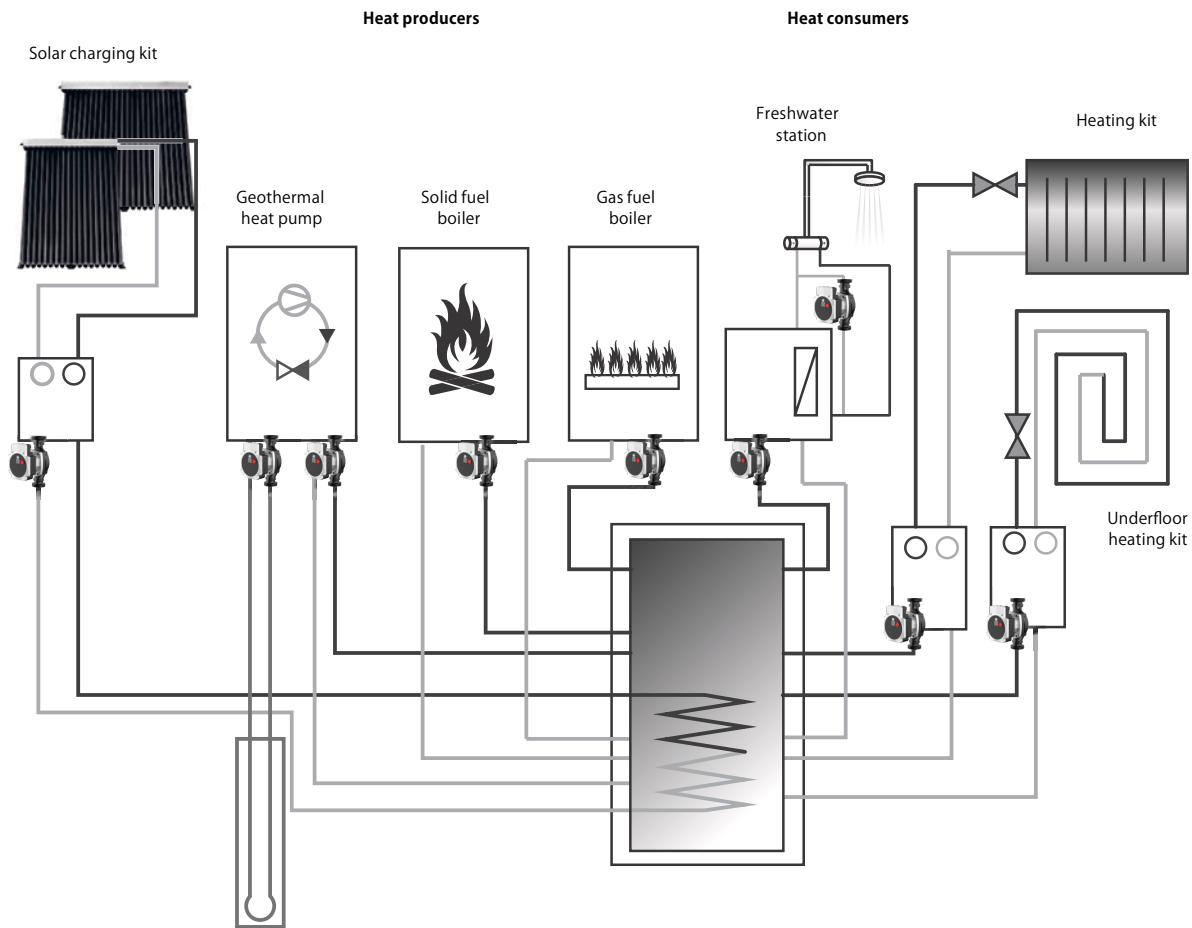
WHM,WHML,WHMXML are designed for circulating liquids in heating systems.


The pumps are suitable for the following systems:

- systems with constant or variable flows where it is desirable to optimise the pump duty point.
- installation in existing systems where the differential pressure of the pump is too high during periods of reduced flow demand.
- installation in new systems for automatic adjustment of the performance to flow demands without the use of bypass valves or similar expensive components.


Examples of systems


One-pipe heating system


Two-pipe heating system

Underfloor heating system

Domestic hot-water recirculation system

Fig. Complete domestic heating system combined with renewable energy sources

On the generation side, most pumps are externally controlled via control signal (PWM) by the appliance control. The pumps on the distribution side are often stand-alone pumps and mainly internally controlled (AUTO version).The pumps in circuits with variable flow are differential-pressure controlled either as constant pressure (CP) or proportional pressure (PP) control. With AUTOADAPT, the control curve is automatically adapted to the actual requirements of the respective application.

For domestic hot water systems, we must offer pumps with stainless-steel or plastic housings that have the necessary drinking water approvals like UBA, KTW, DVGW, ACS, KIWA or WRAS.

For solar thermal systems, SOLAR WHM,SOLAR WHML,SOLAR WHMXL pumps are available, which are suitable for solar media containing glycol up to 110°C (peak).They use the PWM-C signal profile, which is inverse of the PWM-A signal profile. The PWM-C signal profile stops the pump and avoids that the pump runs and overheats or unloads the storage tank, if the signal is missing.

Features

The WHM,WHML,WHMXL range offers a number of important features and benefits for the customer:

- Suitable for heating, solar-thermal systems, geothermal heat pumps and cooling.
- Internally or externally speed-controlled, high-efficiency pumps with electronically commutated motor(ECM)with permanent-magnet rotor and frequency converter.
- Improved motor technology and hydraulics for high pump efficiency.
- Meets all Ecodesign requirements of the ErP regulation EU/622/2012.
- Functional design concentrating on the essentials, fitting in the smallest space.
- Easy operation and convenient setting via external control signals or button.
- Electronics separated from the motor for operation in condensing environment.
- Motor protected against condensed water by means of drain holes and double-coated wiring.
- Fits into the confined space inside boilers and heat pumps.
- Electrical compatibility with existing PWM controllers.
- Low ambient temperature constraints(EN 60335).
- Electrocoated cast-iron housing for the prevention of inside and outside corrosion.
- Low flow noise.
- High starting torque for reliable starting.
- Suitable for cold antifreeze media containing glycol or ethanol.
- Standard delivery with plug for easy electrical connection and quick and safe installation.

Benefits Features

- Use up to 80% less electrical power than conventional constant-speed pumps.
- Use up to 60% less electrical power than conventional speed-controlled pumps.

ErP, Ecodesign regulation in brief

The EU has addressed the climate challenge in a EUP/ErP directive: Since August 2015, all stand-alone pumps as well as pumps integrated in boiler systems,solar systems and heat pump systems must fulfil Ecodesign requirements, defined in regulation 641/2009/EC on glandless pumps, which was amended by 622/2012/EC.The regulation has set radically new standards for energy efficiency.

The essentials Features

- Glandless pumps integrated in products must have an energy efficiency index(EEI) of not more than 0.23.The benchmark level is 0.20.
- Stand-alone pumps are measured according to EN 16297-2.
- Integrated pumps are measured according to EN 16297-3, due to their various functions integrated in many customised hydraulic solutions on the market.
- All pumps integrated in products which generate and/or transfer heat and all types of media are included. This means that not only heating systems, but also solar-thermal and heat pump systems are affected by the Ecodesign regulation.
- Non-compliant spare pumps for integrated pumps sold before August 2015 are allowed until January 1st,2022.
- Pumps designed for recirculation of drinking water are out of the scope of this regulation.
- Pumps designed for recirculation of drinking water are out of the scope of this regulation.
- Conformity with EU regulations is governed through mandatory CE marking.

2. Product range

WHM,WHML,WHMXL

1×230-240V,50/60 Hz

1WHM

2WHM

No.	Model	P1 max [W]	Port to port space [mm]	Body material	Connection	Control
1	WHM20-40	30	130	Cast iron	G1	AUTO/PWM
2	WHM20-40P	30	130	Plastic	G1	AUTO/PWM
3	WHM20-40N	30	130	Stainless steel	G1	AUTO/PWM
4	WHM25-40	30	130/180	Cast iron	G11/2	AUTO/PWM
5	WHM25-40P	30	130	Plastic	G11/2	AUTO/PWM
6	WHM25-40N	30	130/180	Stainless steel	G11/2	AUTO/PWM
7	WHM32-40	30	180	Cast iron	G2	AUTO/PWM
8	WHM32-40N	30	180	Stainless steel	G2	AUTO/PWM
9	WHM20-60	50	130	Cast iron	G1	AUTO/PWM
10	WHM20-60P	50	130	Plastic	G1	AUTO/PWM
11	WHM20-60N	50	130	Stainless steel	G1	AUTO/PWM
12	WHM25-60	50	130/180	Cast iron	G11/2	AUTO/PWM
13	WHM25-60P	50	130	Plastic	G11/2	AUTO/PWM
14	WHM25-60N	50	130/180	Stainless steel	G11/2	AUTO/PWM
15	WHM32-60	50	180	Cast iron	G2	AUTO/PWM
16	WHM32-60N	50	180	Stainless steel	G2	AUTO/PWM
17	WHM20-70	60	130	Cast iron	G1	AUTO/PWM
18	WHM20-70P	60	130	Plastic	G1	AUTO/PWM
19	WHM20-70N	60	130	Stainless steel	G1	AUTO/PWM
20	WHM25-70	60	130/180	Cast iron	G11/2	AUTO/PWM
21	WHM25-70P	60	130	Plastic	G11/2	AUTO/PWM
22	WHM25-70N	60	130/180	Stainless steel	G11/2	AUTO/PWM
23	WHM32-70	60	180	Cast iron	G2	AUTO/PWM
24	WHM32-70N	60	180	Stainless steel	G2	AUTO/PWM
25	WHM20-80	70	130	Cast iron	G1	AUTO/PWM
26	WHM20-80P	70	130	Plastic	G1	AUTO/PWM
27	WHM20-80N	70	130	Stainless steel	G1	AUTO/PWM
28	WHM25-80	70	130/180	Cast iron	G11/2	AUTO/PWM
29	WHM25-80P	70	130	Plastic	G11/2	AUTO/PWM
30	WHM25-80N	70	130/180	Stainless steel	G11/2	AUTO/PWM
31	WHM32-80	70	180	Cast iron	G2	AUTO/PWM
32	WHM32-80N	70	180	Stainless steel	G2	AUTO/PWM
33	WHM20-90	80	130	Cast iron	G1	AUTO/PWM
34	WHM20-90P	80	130	Plastic	G1	AUTO/PWM
35	WHM20-90N	80	130	Stainless steel	G1	AUTO/PWM
36	WHM25-90	80	130/180	Cast iron	G11/2	AUTO/PWM
37	WHM25-90P	80	130	Plastic	G11/2	AUTO/PWM
38	WHM25-90N	80	130/180	Stainless steel	G11/2	AUTO/PWM
39	WHM32-90	80	180	Cast iron	G2	AUTO/PWM
40	WHM32-90N	80	180	Stainless steel	G2	AUTO/PWM

2WHML,XL

BMC Motor

3WHML, XL

BMC Motor

No.	Model	P1 max [W]	Port to port space [mm]	Body material	Connection	Control
1	WHML25-105	140	130/180	Cast iron	G11/2	AUTO/PWM
2	WHML25-105P	140	130	Plastic	G11/2	AUTO/PWM
3	WHML25-105N	140	130/180	Stainless steel	G11/2	AUTO/PWM
4	WHML32-105	140	180	Cast iron	G2	AUTO/PWM
5	WHML32-105N	140	180	Stainless steel	G2	AUTO/PWM
6	WHML25-125	180	130/180	Cast iron	G11/2	AUTO/PWM
7	WHML25-125P	180	130	Plastic	G11/2	AUTO/PWM
8	WHML25-125N	180	130/180	Stainless steel	G11/2	AUTO/PWM
9	WHML32-125	180	180	Cast iron	G2	AUTO/PWM
10	WHML32-125N	180	180	Stainless steel	G2	AUTO/PWM
11	WHML25-140	190	130/180	Cast iron	G11/2	AUTO/PWM
12	WHML25-140P	190	130	Plastic	G11/2	AUTO/PWM
13	WHML32-140N	190	130/180	Stainless steel	G11/2	AUTO/PWM
14	WHML32-140	190	180	Cast iron	G2	AUTO/PWM
15	WHML32-140N	190	180	Stainless steel	G2	AUTO/PWM
16	WHM XL25-110	250	180	Cast iron	G11/2	AUTO/PWM
17	WHM XL25-110N	250	180	Stainless steel	G11/2	AUTO/PWM
18	WHM XL32-110	250	180	Cast iron	G2	AUTO/PWM
19	WHM XL32-110N	250	180	Stainless steel	G2	AUTO/PWM
20	WHM XL25-160	250	180	Cast iron	G11/2	AUTO/PWM
21	WHM XL25-160N	250	180	Stainless steel	G11/2	AUTO/PWM
22	WHM XL32-160	250	180	Cast iron	G2	AUTO/PWM
23	WHM XL32-160N	250	180	Stainless steel	G2	AUTO/PWM
24	WHM XL25-120	350	180	Cast iron	G11/2	AUTO/PWM
25	WHM XL25-120N	350	180	Stainless steel	G11/2	AUTO/PWM
26	WHM XL32-120	350	180	Cast iron	G2	AUTO/PWM
27	WHM XL32-120N	350	180	Stainless steel	G2	AUTO/PWM
28	WHM XL25-180	350	180	Cast iron	G11/2	AUTO/PWM
29	WHM XL25-180N	350	180	Stainless steel	G11/2	AUTO/PWM
30	WHM XL32-180	350	180	Cast iron	G2	AUTO/PWM
31	WHM XL32-180N	350	180	Stainless steel	G2	AUTO/PWM

2WHML,XL-F

3WHML, XL-F

BMC Motor

BMC Motor

No.	Model	P1 max [W]	Port to port space [mm]	Body material	Connection	Control
1	WHMXL32-120F	350	220	Cast iron	DN32	AUTO/PWM
2	WHMXL40-120F	400	250	Cast iron	DN40	AUTO/PWM

3. Identification

Type key

Example: WHM XL 32 -120 F 220 AUTO BMC

Type

WHM = Standard

SOLAR WHM = For solar systems

Power variant

= 30 ~ 90W

L = 140 ~ 190W

XL = 250 ~ 400W

Nominal diameter

25 R 1" / G 1 1/2"

32 R 1 1/4" / G 2"

Nominal head

105 10.5m

125 12.5m

140 14.0m

... ...

= Threaded ports

F = Flanged ports

Pump housing, port-to-port length

130 Cast iron , 130 mm

180 Cast iron , 180 mm

220 Cast iron , 220 mm

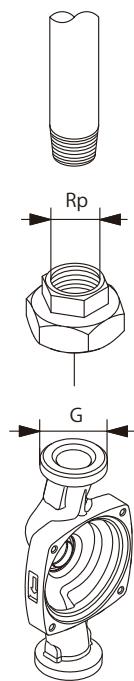
250 Cast iron , 250 mm

N 180 Stainless steel , 180 mm

P 130 Plastic , 130mm

B 130 Brass , 130mm

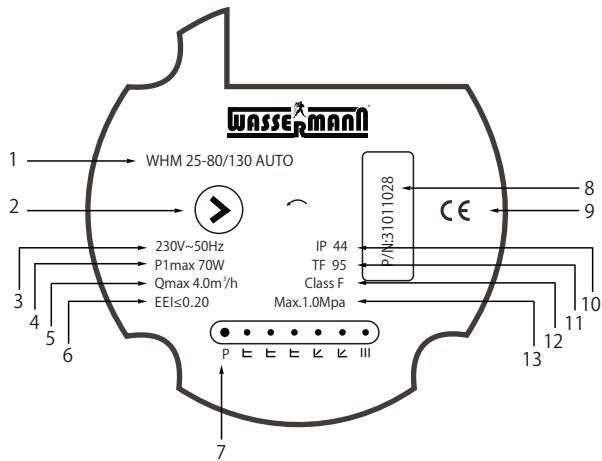
Control variant

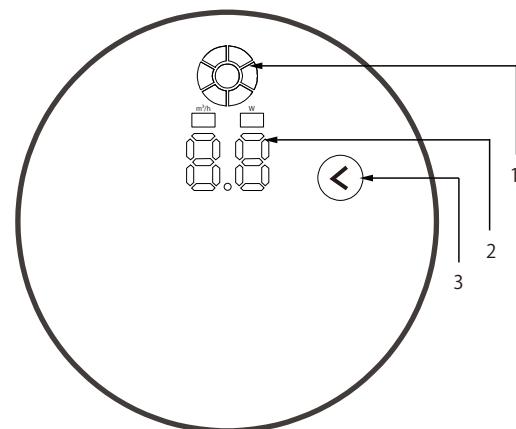

AUTO Internally controlled

PWM Externally controlled via PWM,power feedback only

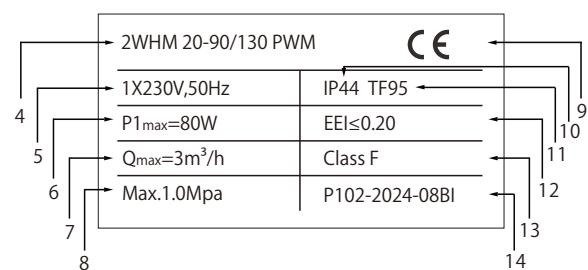
PWM-F Externally controlled via PWM,flow feedback available

Encapsulated motor with AL. case

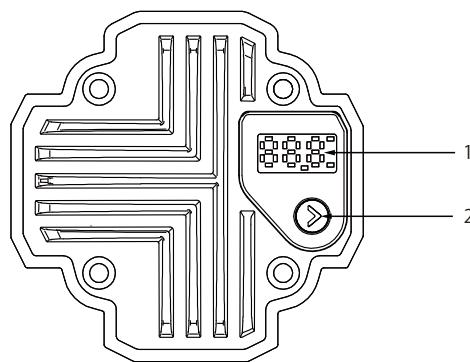

BMC BMC motor


G-threads and R-threads

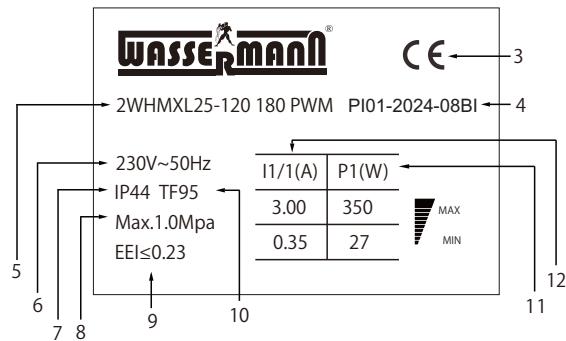
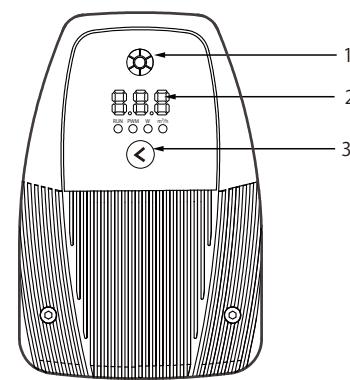
Nameplate


1WHM

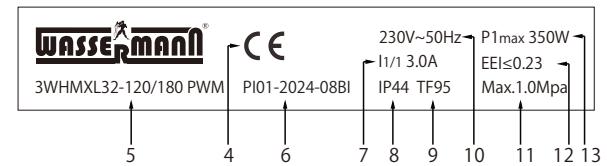
2WHM


Pos	Description
1	Product type
2	Control Mode setting button
3	Voltage and frequency [V, Hz]
4	Input power [W]
5	Max flow [m³/h]
6	Energy index
7	Running light and Control mode LEDs
8	Serial number
9	CE mark
10	Enclosure class
11	Temperature class
12	Insulation class
13	Maximum system pressure [Mpa]

Pos	Description
1	Running light
2	Control mode LEDs
3	Control mode setting button
4	Product type
5	Voltage and frequency [V, Hz]
6	Input power [W]
7	Max flow [m³/h]
8	Maximum system pressure [Mpa]
9	CE mark
10	Enclosure class
11	Temperature class
12	Energy index
13	Insulation class
14	Serial number



Nameplate

2WHML,WHMXL



Nameplate

3WHML,WHMXL

Pos	Description
1	Running light and control mode LED
2	Control mode setting button
3	CE mark
4	Serial number
5	Product type
6	Voltage and frequency [V, Hz]
7	Enclosure class
8	Maximum system pressure [Mpa]
9	Energy index
10	Temperature class
11	Input power [W] at maximum and minimum performance
12	Maximum current [A] at maximum and minimum performance

Pos	Description
1	Running light
2	Control mode LED
3	Control mode setting button
4	CE mark
5	Product type
6	Serial number
7	Maximum current [A]
8	Enclosure class
9	Temperature class
10	Voltage and frequency [V, Hz]
11	Maximum system pressure [Mpa]
12	Energy index
13	Input power [W]

4. Control modes, user interface and settings

Pump control in heating systems

The heating required in a building varies greatly during the day due to changing outdoor temperatures, solar radiation and heat emanating from people, electric appliances, and others. In addition, the need for heating may vary from one section of the building to another and the thermostatic valves of some radiators may have been turned down by the users. An uncontrolled pump will produce a too high differential pressure when the heat demand and flow are low.

Possible consequences:

- too high energy consumption
- irregular control of the system
- noise in thermostatic radiator valves and similar fittings

WASSERMANN WHM AUTO,WHML AUTO,WHMXML AUTO pumps automatically control the differential pressure by adjusting the performance to the actual heat demand, without the use of external components.

Control mode explanation

WHM PWM,WHML PWM,WHMXML PWM - externally controlled by a control signal from the system controller

All WHM,WHML,WHMXML pumps are available with external digital PWM control signal.

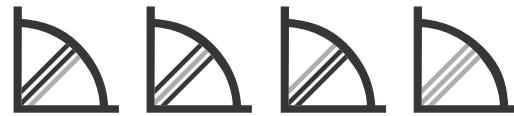
PWM A profile (heating) (externally controlled)

The pump runs on constant-speed curves depending on the current PWM value (regarding VDMA 24244).

The speed decreases when the PWM value increases.
If PWM equals 0, the pump runs at maximum speed.

PWM C profile (solar) (externally controlled)

The pump runs on constant-speed curves depending on the current PWM value.


The speed increases when the PWM value increases.
If PWM equals 0, the pump stops.

WHM AUTO,WHML AUTO,WHMXML AUTO - internally controlled by the integrated pump controller

Proportional Pressure (internally controlled)

The head (pressure) is reduced with falling heat demand and increased with rising heat demand.

The duty point of the pump will move up or down on the selected proportional-pressure curve, depending on the heat demand in the system.

- PP1: lowest proportional-pressure curve
- PP2: intermediate proportional-pressure curve
- PP3: highest proportional-pressure curve
- PPA: AUTOADAPT, highest to lowest proportional-pressure curve

In Proportional Pressure AUTOADAPT, the pump is set to proportional-pressure control.

The AUTOADAPT function enables the pump to control the pump performance automatically within a defined performance range.

- Adjusting the pump performance to the size of the system.
- Adjusting the pump performance to the variations in load over time.

Constant Pressure

The head (pressure) is kept constant, irrespective of the heat demand.

The duty point of the pump moves out or in on the selected constant-pressure curve, depending on the heat demand in the system.

The Constant Pressure/power mode limits the maximum power consumption, like formerly the performance of standard pumps with speed selector.

At reduced flow, the head increases. When the maximum head selected is reached, the speed of the pump is reduced to keep this head (differential pressure) down to zero flow.

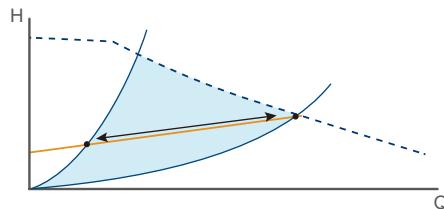
- CP1: lowest constant-pressure curve
- CP2: intermediate constant-pressure curve
- CP3: highest constant-pressure curve
- CPA: AUTOADAPT, highest to lowest constant-pressure curve

In Constant Pressure AUTOADAPT, the pump is set to constant-pressure control.

The AUTOADAPT function enables the pump to control the performance automatically within a defined performance range.

- Adjusting the pump performance to the size of the system.
- Adjusting the pump performance to the variations in load over time.

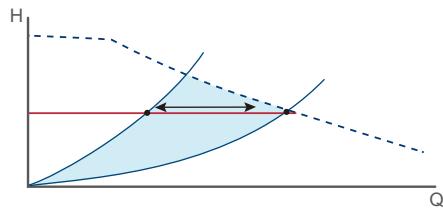
Control modes AUTO version


Application	Control mode
Floor heating	Underfloor heating mode, CP curve
Two-pipe system	Radiator heating mode, PP curve
Ventilation	
Boiler-shunt	
One-pipe system	Speed III,CC curve
Boiler(integrated)	
Domestic hot water	

Radiator heating mode

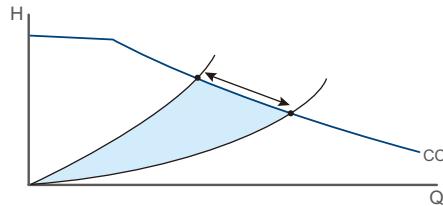
Radiator heating mode

The radiator heating mode adjusts the pump's performance to the actual heat demand in the system following a proportional-pressure curve. See figure below and Overview of pump performance for further information.



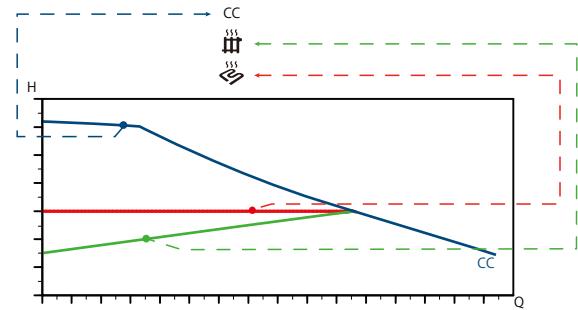
Proportional-pressure curve

Underfloor heating mode


The underfloor heating mode adjusts the pump's performance to the actual heat demand in the system following a constant-pressure curve. See fig. Constant-pressure curve and Overview of pump performance on page Overview of pump performance for further information.

Constant-pressure curve

Constant curve/constant speed control


At constant curve/constant speed operation the pump runs at a constant speed, independent of the actual flow demand in the system. The pump performance follows the selected performance curve CC. See fig. Three constant-curve/constant-speed settings where II has been selected. See Overview of pump performance on page Overview of pump performance for further information.

Three constant-curve/constant-speed settings

The selection of the right constant-curve/constant-speed setting depends on the characteristics of the heating system in question and the number of taps likely to be opened at the same time.

Overview of pump performance

Pump setting in relation to performance

Setting	Pump curve	Function
	Proportional-pressure curve	The duty point of the pump will move up or down on a proportional-pressure curve, depending on the heat demand in the system. The head (pressure) is reduced at falling heat demand and increased at rising heat demand.
	Constant-pressurecurve	The duty point of the pump will move out in the constant-pressure curve, depending on the heat demand in the system. The head (pressure) is kept constant, irrespective of the heat demand.
CC	Speed III	The pump runs at a constant speed and consequently on a constant curve. At speed III, the pump is set to run on the maximum curve under all operating conditions. Quick venting of the pump can be obtained by setting the pump to speed III for a short period.

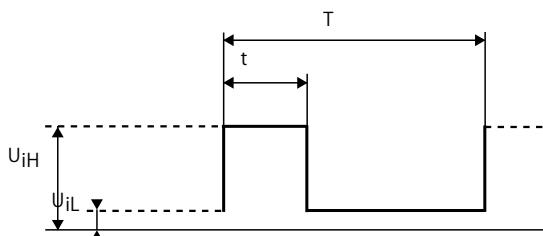
5. Control modes and signals

Control principles

All WHM, WHML, WHXML pumps can be controlled via a digital low-voltage pulse-width modulation (PWM) signal, which means that the speed of rotation depends on the input signal. The speed changes as a function of the input profile.

Control signals

Digital low-voltage PWM signal


The square-wave PWM signal is designed for a 100 to 4,000 Hz frequency range. The PWM signal is used to select the speed (speed command) and as feedback signal. The PWM frequency on the feedback signal is fixed at 75 Hz in the pump.

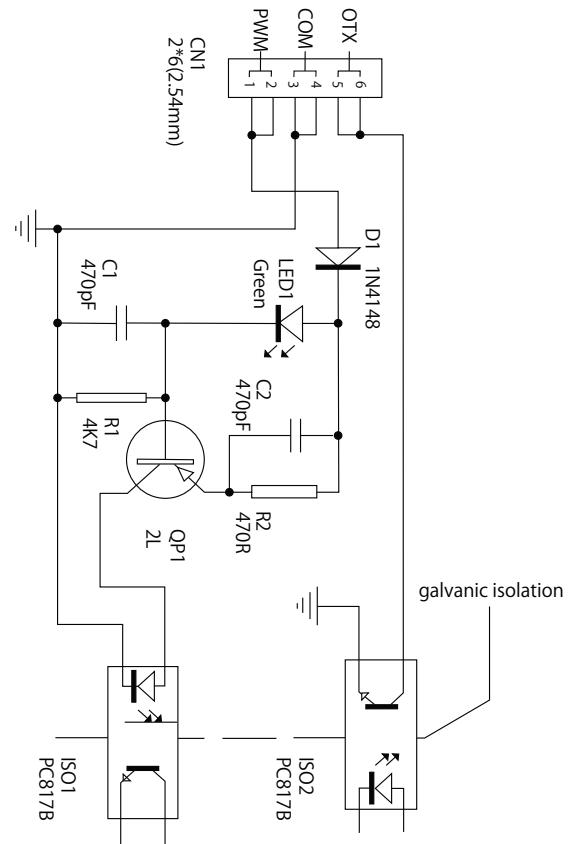
Duty cycle

$$d\% = 100 \times t/T$$

Example	Rating
$T = 2 \text{ ms (500 Hz)}$	$U_{iH} = 4-24 \text{ V}$
$t = 0.6 \text{ ms}$	$U_{iL} \leq 1 \text{ V}$
$d\% = 100 \times 0.6 / 2 = 30 \text{ \%}$	$I_{iH} = 10 \text{ mA}$

Example

Fig. 1 PWM signal


Abbreviation	Description
T	Period of time [sec.]
d	Duty cycle [t/T]
U_{iH}	High-level input voltage
U_{iL}	Low-level input voltage
I_{iH}	High-level input current

Interface

WHM PWM,WHML PWM,WHMXML PWM interface consists of an electronic part connecting the external control signal to the pump. The interface translates the external signal into a signal type that the micro processor can understand.

In addition, the interface ensures that the user cannot get into contact with dangerous voltage if touching the signal wires when power is connected to the pump.

Note : "Signal ref." is a signal reference with no connection to protective earth.

Fig. 2 Schematic drawing, interface

PWM input signal profile A (heating)

At high PWM signal percentages (duty cycles), a hysteresis prevents the pump from starting and stopping if the input signal fluctuates around the shifting point. At low PWM signal percentages, the pump speed is high for safety reasons. In case of a cable breakage in a gas boiler system, the pump continues to run at maximum speed to transfer heat from the primary heat exchanger. This is also suitable for heating pumps to ensure that the pumps transfer heat in case of a cable breakage.

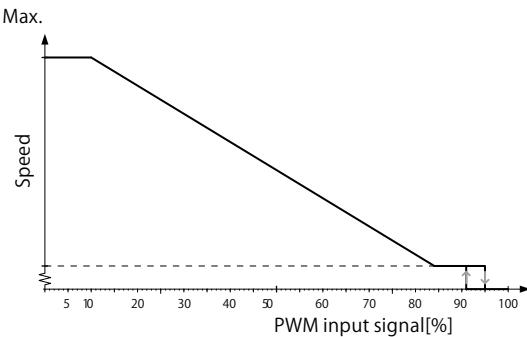


Fig. 3 PWM input profile A (heating)

PWM input signal [%]	Pump status
≤ 5	Maximum speed: max
$>5 / \leq 84$	Variable speed: max to min
$>84 / \leq 91$	Minimum speed: min
$>91 / \leq 95$	Hysteresis area: on/off
$>95 / \leq 100$	Standby mode: off

PWM input signal profile C (solar)

At low PWM signal percentages (duty cycles), a hysteresis prevents the pump from starting and stopping if the input signal fluctuates around the shifting point. Without PWM signal percentages, the pump will stop for safety reasons. If a signal is missing, for example due to a cable breakage, the pump will stop to avoid overheating of the solar thermal system.

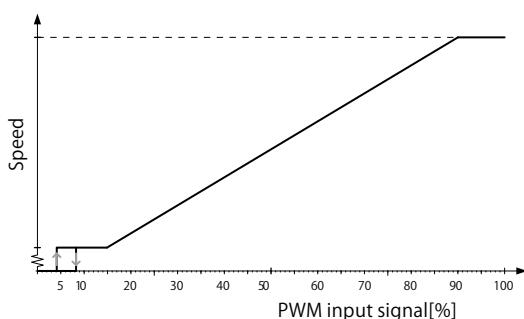


Fig. 4 PWM input profile C (solar)

PWM input signal [%]	Pump status
≤ 5	Standby mode: off
$>5 / \leq 8$	Hysteresis area: on/off
$>8 / \leq 15$	Minimum speed: min
$>15 / \leq 90$	Variable speed: min. to max
$>90 / \leq 100$	Maximum speed: max

PWM feedback signal - power consumption (standard)

The PWM feedback signal offers pump information like in bus systems:

- current power consumption (accuracy $\pm 2\%$ of PWM signal)
- warning
- alarm
- operation status

Alarms

Alarm output signals are available because some PWM output signals are dedicated to alarm information. If a supply voltage is measured below the specified supply voltage range, the output signal is set to 75 %. If the rotor is blocked due to deposits in the hydraulics, the output signal is set to 90 %, because this alarm has a higher priority.

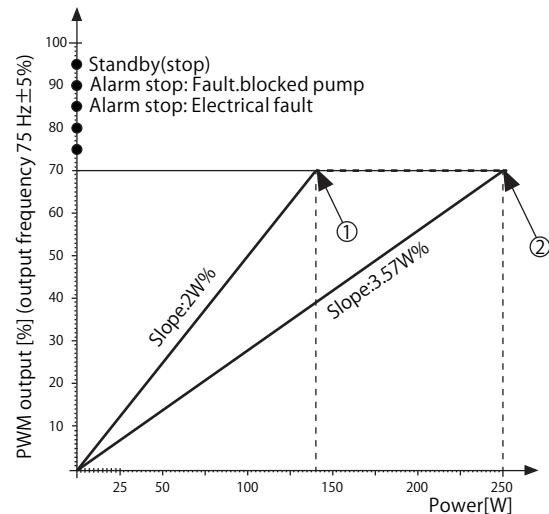
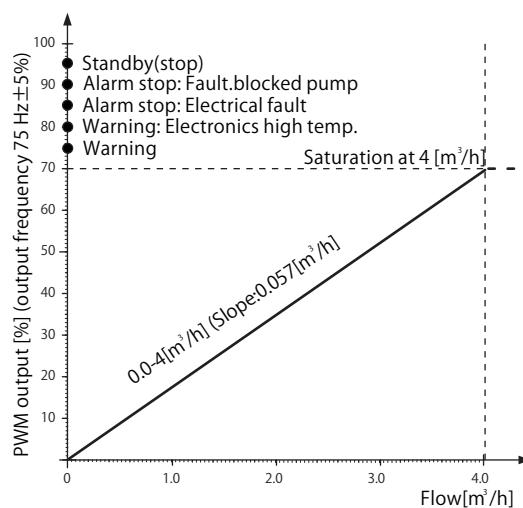


Fig. 5 PWM feedback signal, power consumption


Pos.	Type	Description		
1	WHML	slope 2 W/%, saturation point, 140 W		
2	WHMXML	slope 3.57 W/%, saturation point, 250 W		
<hr/>				
PWM output signal [%]	QT [s]	Pump info	DT [s]	Priority
95	0	Standby(STOP) by PWM signal	0	1
90	30	Alarm, stop, blocked error	12	2
85	0-30	Alarm, stop, electrical error	1-12	3
75	0	WARNING	0	5
0-70				6
Output frequency: 75 Hz $\pm 5\%$				

QT = qualification time, DT = disqualification time

PWM feedback signal - flow estimation (on request)

On request, there is an option where the PWM feedback signal can also be used to indicate the flow of the pump on defined pump housings (e.g. cast iron inline) above a head of 1 m. The accuracy of the feedback signal is depending on the media, media temperature and operation point, but it gives an indication on the actual flow.

Example: The PWM output range between 0-70 % shows the flow between 0 and 4 m³/h with a slope of 0.057 m³/h / % PWM.

Fig. 6 PWM feedback signal - flow estimation

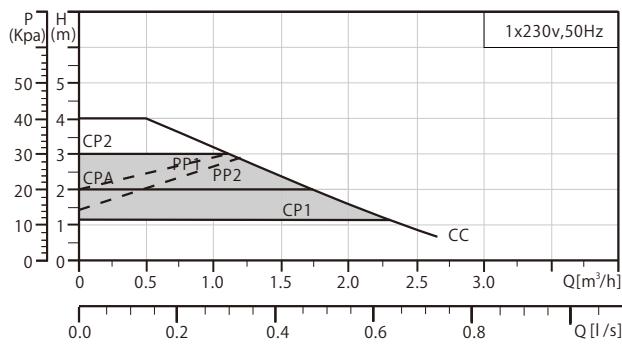
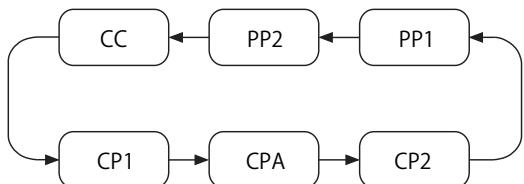
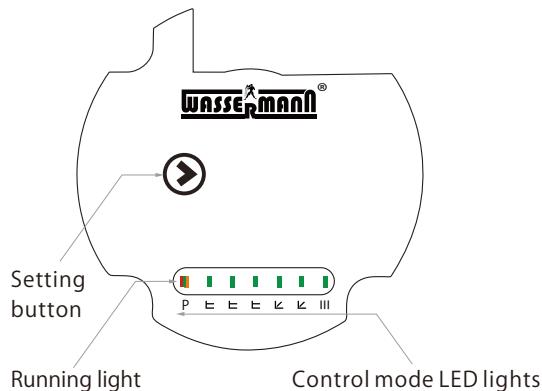
Data

Maximum rating	Symbol	Value
PWM frequency input with high-speed optocoupler	f	800-4000 Hz
Guaranteed standby power consumption		< 3 W
Rated input voltage - high level	UiH	4-24 V
Rated input voltage - low level	UiL	< 1 V
High-level input current	liH	< 10 mA
Input duty cycle	PWM	0-100%
PWM frequency output,open collector	f	75Hz±5%
Accuracy of output signal regarding power consumption		± 2 % (of PWM signal)
Note: A PWM output signal below 5 % is too inaccurate for the calculation of the flow.		
Accuracy of output signal regarding flow:		
< 1 m ³ /h		± 0.1 m ³ /h
> 1 m ³ /h		± 0.2 m ³ /h
Output duty cycle	PWM	0-100%
Collector emitter breakdown voltage on output transistor	U _c	< 70 V
Collector current on output transistor	I _c	< 50 mA
Maximum power dissipation on output resistor	P _R	60 mW
Zener diode working voltage	U _z	36 V
Maximum power dissipation in Zener diode	R _z	500 mW

6. User interface

Externally controlled PWM versions

Externally PWM controlled WHM PWM, WHML PWM, WHMXML PWM pumps have no user interface. The PWM profile A input-signal control mode is enabled when the signal cable is plugged in and a signal is detected.




AUTO versions

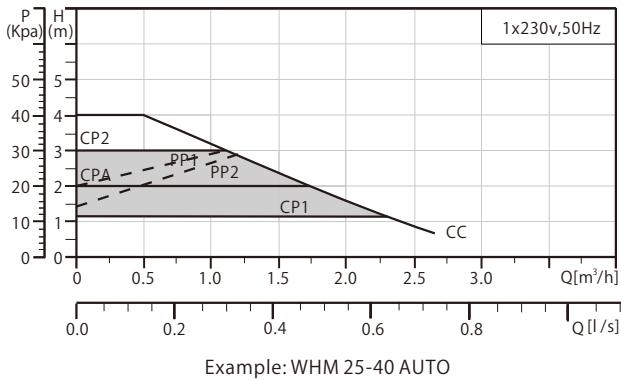
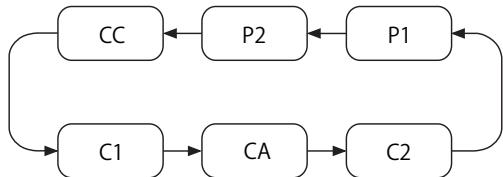
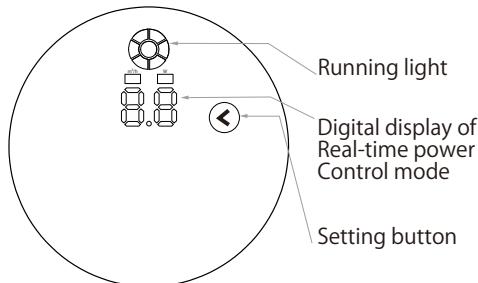
Internally controlled WHM AUTO, WHML AUTO, WHMXML AUTO pumps have an user interface with one setting button and LED lights or LED display window.

Setting the pump 1WHM AUTO

The user interface allows to select between 6 control curves in three control modes.

- 2 proportional pressure curves (PP1, PP2)
- 2 constant pressure curves (CP1, CP2), plus one AUTOADAPT curve (CPA)
- 1 Maximum power curve (CC)

Operating panel	Control mode
	Constant pressure curve CP1 (underfloor heating mode)
	Constant pressure AUTOADAPT curve CPA (underfloor heating mode)
	Constant pressure curve CP2 (underfloor heating mode)
	Proportional pressure curve PP1 (radiator heating mode)
	Proportional pressure curve PP2 (radiator heating mode)
	Max power curve CC
	PWM mode, the first LED switches from green to orange

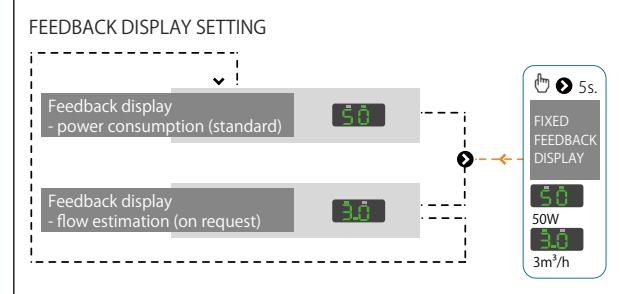
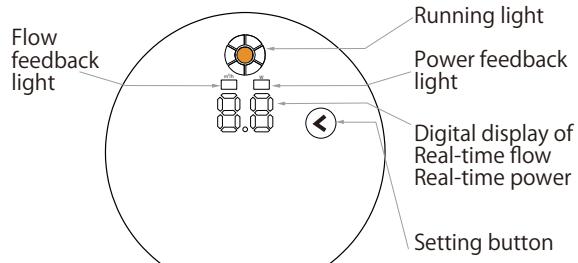



The first time, the pump starts with the factory presetting: max power curve CC.

- Push the button: the pump goes to setting mode.
- With each push, the setting changes: the first LED is permanently on and green, the control curve and mode are changed.
- If the button is not pushed: the setting is adapted the pump returns into operating mode.
- During operation, the first LED is permanently on and green, the pump is running with selected curve and mode.

Setting the pump 2WHM AUTO

The user interface allows to select between 6 control curves in three control modes.

- 2 proportional pressure curves (P1, P2)
- 2 constant pressure curves (C1, C2), plus one AUTOADAPT curve (CA)
- 1 Maximum power curve (CC)

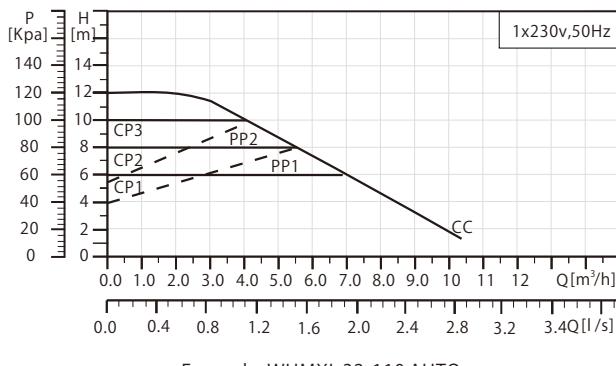
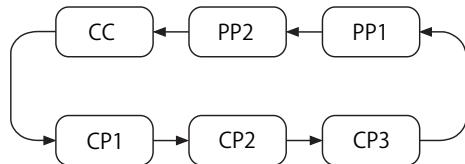
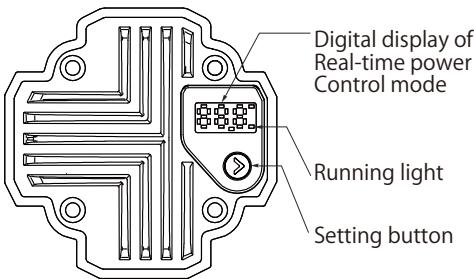



Operating panel	Control mode
	Constant pressure curve CP1 (underfloor heating mode)
	Constant pressure AUTOADAPT curve CPA (underfloor heating mode)
	Constant pressure curve CP2 (underfloor heating mode)
	Proportional pressure curve PP1 (radiator heating mode)
	Proportional pressure curve PP2 (radiator heating mode)
	Max power curve CC
	PWM mode, the running light switches from green to orange

The first time, the pump starts with the factory presetting: max power curve CC and real-time power.

- Push the button the pump goes to setting mode, the display starts flashing.
- With each push, the setting changes: the running light is permanently on and green, the control curve and mode are changed. If the button is not pushed: the setting is adapted the pump returns into real-time power display.
- During operation, the display shows the selected setting, the running light is permanently on and green, the pump is running with selected curve and mode.

Setting the pump 2WHM PWM-F

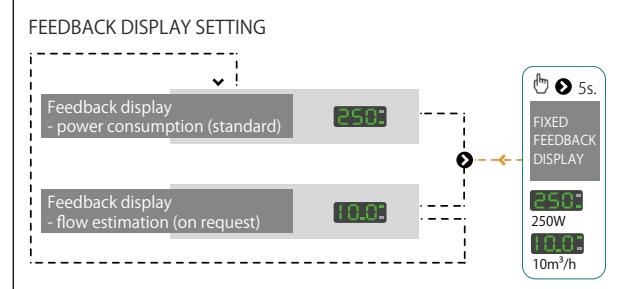
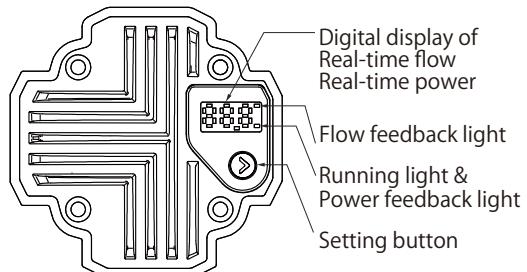




- The first time, the pump starts with the factory presetting: real-time power display.
- Push the button for 5 seconds: the pump goes the setting of power feedback and flow feedback, the display starts flashing.
- With each push, the display changes: the power feedback light is on and green, the display shows the real-time power, the flow feedback light is on and green, the display shows the real-time flow.
- During operation, the display shows the real-time data of the selected feedback.
- Plug the signal cable, the running light switches from green to orange, the pump goes to the external control, in this case the setting button is invalid, the user is unable to set anything on the interface.

Setting the pump 2WHML AUTO, 2WHMXML AUTO

The user interface allows to select between 6 control curves in three control modes.

- 2 proportional pressure curves (PP1, PP2)
- 3 constant pressure curves (CP1, CP2, CP3)
- 1 Maximum power curve (CC)

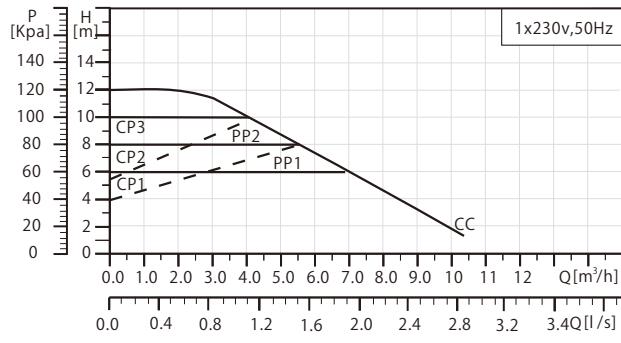
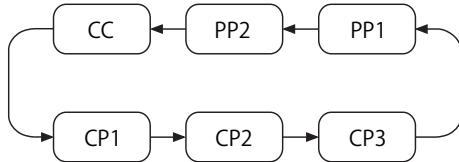
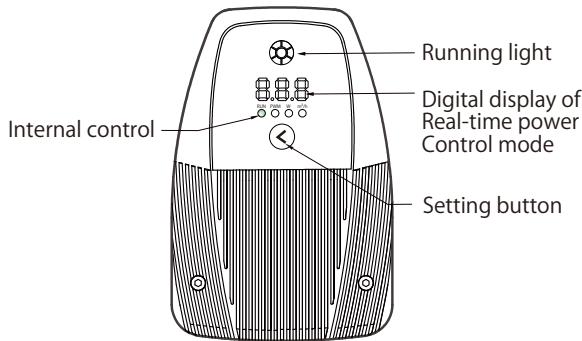



Operating panel	Control mode
CP1:	Constant pressure curve CP1 (underfloor heating mode)
CP2:	Constant pressure curve CP2 (underfloor heating mode)
CP3:	Constant pressure curve CP3 (underfloor heating mode)
PP1:	Proportional pressure curve PP1 (radiator heating mode)
PP2:	Proportional pressure curve PP2 (radiator heating mode)
CC1:	Maximum power curve CC
250:	PWM mode, both lights are on and green

The first time, the pump starts with the factory presetting: max power curve CC and real-time power.

- Push the button the pump goes to setting mode, the display starts flashing.
- With each push, the setting changes: the running light is permanently on and green, the control curve and mode are changed. If the button is not pushed: the setting is adapted the pump returns into real-time power display.
- During operation, the display shows the selected setting, the running light is permanently on and green, the pump is running with selected curve and mode.

Setting the pump 2WHML PWM-F, 2WHMXML PWM-F

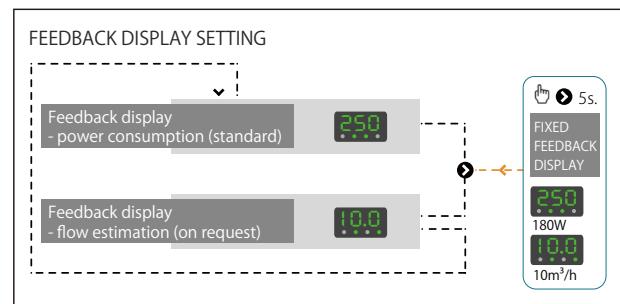
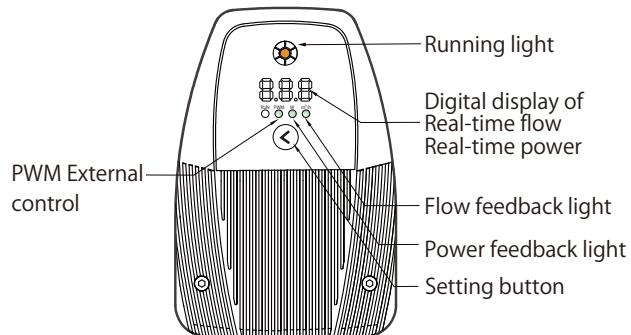




- The first time, the pump starts with the factory presetting: real-time power display.
- Push the button for 5 seconds: the pump goes the setting of power feedback and flow feedback, the display starts flashing.
- With each push, the display changes: the power feedback light is on and green, the display shows the real-time power, the flow feedback light is on and green, the display shows the real-time flow.
- During operation, the display shows the real-time data of the selected feedback.
- Plug the signal cable, both the power feedback light and the flow feedback light are on and keeps green, the pump goes to the external control PWM mode, the display shows the selected feedback before plug in. In PWM mode, the setting button is invalid, the user is unable to set anything on the interface.

Setting the pump 3WHML AUTO,3WHMXL AUTO

The user interface allows to select between 6 control curves in three control modes.

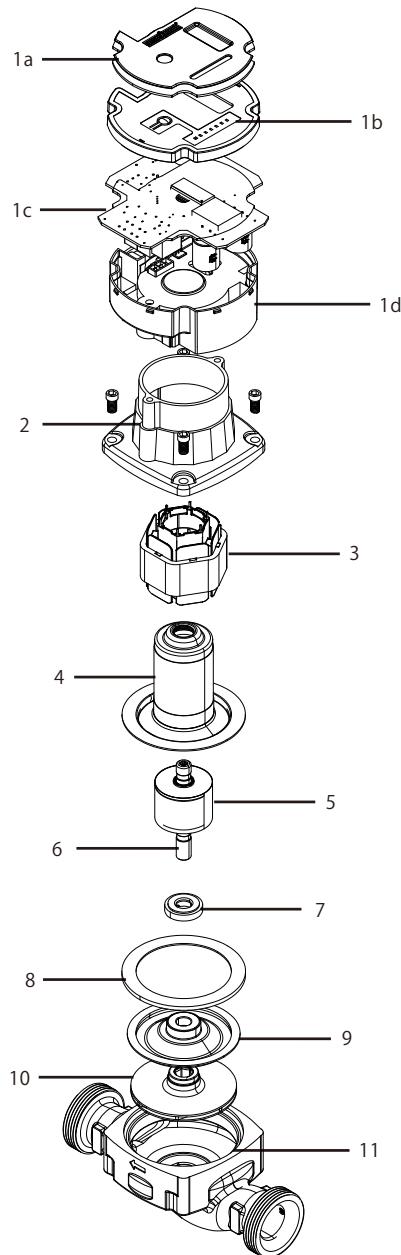
- 2 proportional pressure curves (PP1,PP2)
- 3 constant pressure curves (CP1, CP2, CP3)
- 1 Maximum power curve (CC)

Operating panel	Control mode
CP1	Constant pressure curve CP1 (underfloor heating mode)
CP2	Constant pressure curve CP2 (underfloor heating mode)
CP3	Constant pressure curve CP3 (underfloor heating mode)
PP1	Proportional pressure curve PP1 (radiator heating mode)
PP2	Proportional pressure curve PP2 (radiator heating mode)
CC	Maximum power curve CC
	PWM mode, the running light switches from green to orange

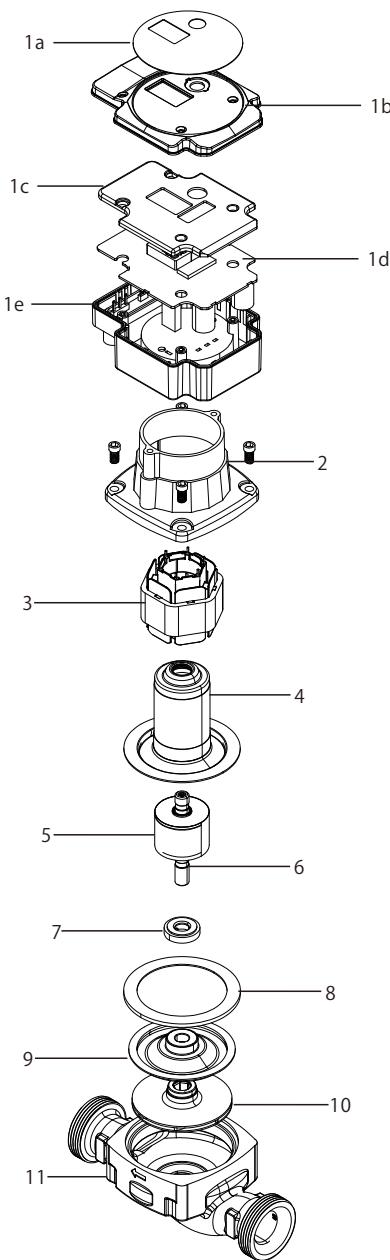
The first time, the pump starts with the factory presetting: max power curve CC and real-time power.

- Push the button the pump goes to setting mode, the display starts flashing.
- With each push, the setting changes: the running light is permanently on and green, the control curve and mode are changed. If the button is not pushed: the setting is adapted the pump returns into real-time power display.
- During operation, the display shows the selected setting, the running light is permanently on and green, the pump is running with selected curve and mode.


Setting the pump 3WHML PWM-F,3WHMXL PWM-F

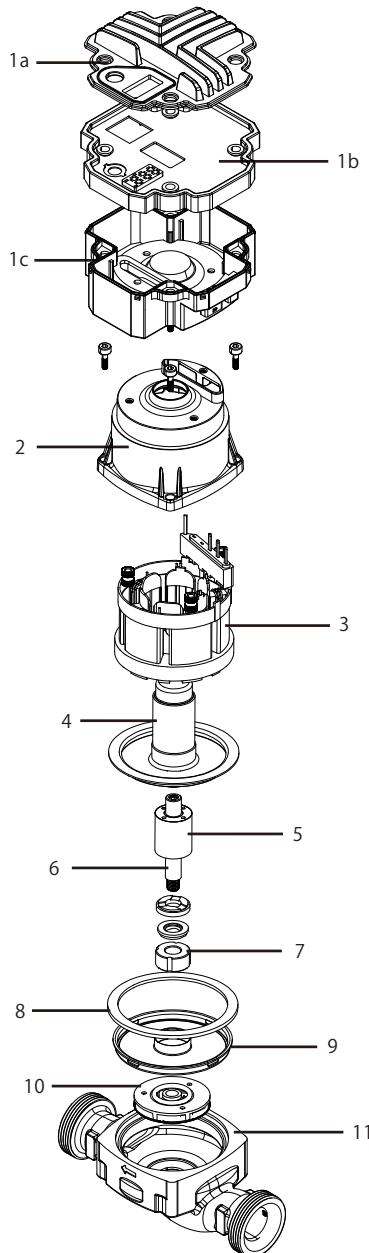
- The first time, the pump starts with the factory presetting: real-time power display.
- Push the button for 5 seconds: the pump goes the setting of power feedback and flow feedback, the display starts flashing.
- With each push, the display changes: the power feedback light is on and green, the display shows the real-time power, the flow feedback light is on and green, the display shows the real-time flow.
- During operation, the display shows the real-time data of the selected feedback.
- Plug the signal cable, the internal control light is off, the PWM external control light is on and keeps green, the pump goes to the external control PWM mode, the display shows the selected feedback before plug in. In PWM mode, the setting button is invalid, the user is unable to set anything on the interface.

7. Technical description


Exploded view 1WHM

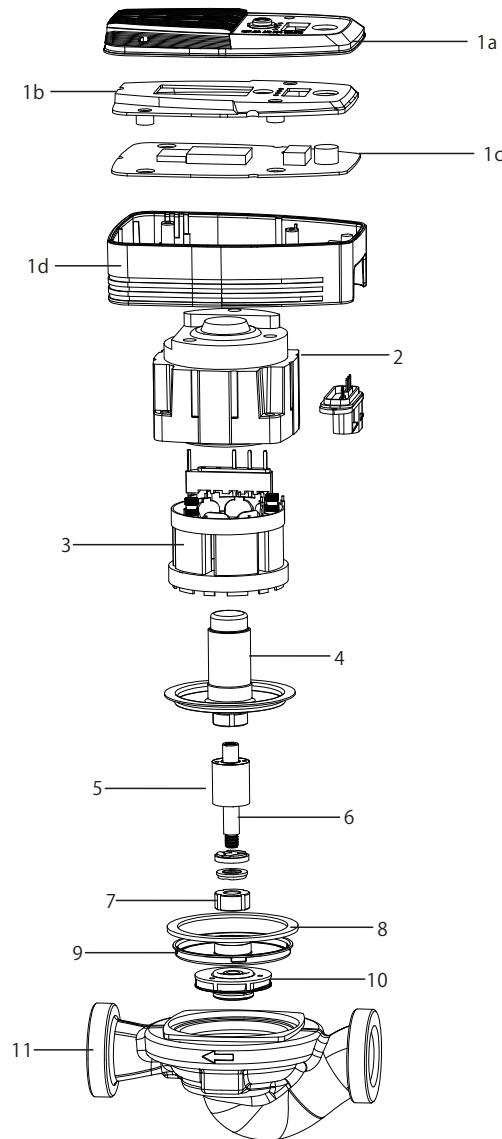
Material specification

Pos.	Component	Material
1a	Heat sink with cooling pad	Aluminum alloy ACD12
1b	Control box cover	Composite PC-V0 + GF30%
1c	Control box electronics	PCB with SMD components
1d	Control box housing	PC-V0 + GF30%
2	Stator housing	Aluminum alloy ACD12
3	Stator winding	Copper wire
3	Stator lamination	Laminated iron
4	Rotor Can	Stainless steel SUS304
5	Rotor magnet	NdFeB or Ferrite
5	Rotor cladding	Stainless steel SUS304
6	Shaft	Stainless steel SUS304
7	Thrust bearing	Ceramic coated with rubber
8	Gasket	EPDM
9	Bearing plate	Stainless steel SUS304
10	Impeller	PES + GF30%
11	Pump body	Cast iron/Plastic /Stainless steel SUS304


Exploded view 2WHM

Material specification

Pos.	Component	Material
1a	PC sheet	PC
1b	Heat sink with cooling pad	Aluminum alloy ACD12
1c	Insulation cover	ABS+GF10%
1d	Control box electronics	PCB with SMD components
1e	Control box housing	PC-V0 + Gf30%
2	Stator housing	Aluminum alloy ACD12
3	Stator winding	Copper wire
3	Stator lamination	Laminated iron
4	Rotor Can	Stainless steel SUS304
5	Rotor magnet	NdFeB or Ferrite
5	Rotor cladding	Stainless steel SUS304
6	Shaft	Stainless steel SUS304
7	Thrust bearing	Ceramic coated with rubber
8	Gasket	EPDM
9	Bearing plate	Stainless steel SUS304
10	Impeller	PES + GF30%
11	Pump body	Cast iron/Plastic /Stainless steel SUS304


Exploded view 2WHML,2WHMXL

Material specification

Pos.	Component	Material
1a	Heat sink with cooling pad	Aluminum alloy ACD12
1b	Control box cover	Composite PC-V0 + GF30%
1c	Control box housing	PC-V0 + GF30%
2	Stator housing	Aluminum alloy ACD12
3	Stator winding	Copper wire
3	Stator lamination	Laminated iron
4	Rotor Can	Stainless steel SUS304
	Rotor stack	Laminated iron
5	Rotor magnet	NdFeB or Ferrite
	Rotor cladding	Stainless steel SUS304
6	Shaft	Ceramic
7	Thrust bearing	Graphite
8	Gasket	EPDM
9	Bearing plate	Stainless steel SUS304
10	Impeller	PES + GF30%
11	Pump body	Cast iron/Plastic /Stainless steel SUS304

Exploded view 3WHML,3WHMXL

Material specification

Pos.	Component	Material
1a	Heat sink with cooling pad	Aluminum alloy ACD12
1b	Control box cover	Composite PC-V0 + GF30%
1c	Control box electronics	PCB with SMD components
1d	Control box housing	PC-V0 + GF30%
2	Stator housing	Aluminum alloy ACD12
3	Stator lamination	Laminated iron
4	Rotor Can	Stainless steel SUS304
5	Rotor stack	Laminated iron
6	Rotor magnet	NdFeB or Ferrite
7	Rotor cladding	Stainless steel SUS304
8	Shaft	Ceramic
9	Thrust bearing	Graphite
10	Gasket	EPDM
11	Bearing plate	Stainless steel SUS304
12	Impeller	PES + GF30%
13	Pump body	Cast iron/Plastic /Stainless steel SUS304

Description of components

WHM,WHML,WHMXL pumps are of the canned-rotor type, that is pump and motor form an integral unit without shaft seal and with only one gasket for sealing and four screws for fastening the stator housing to the pump housing. The bearings are lubricated by the pumped medium.

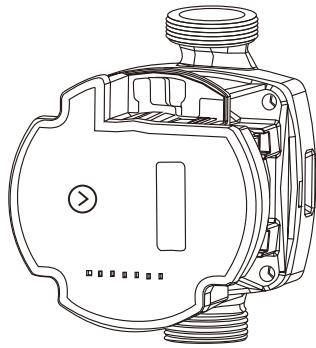


Fig. 7 Example, WHM

Motor

The efficiency of the 4-pole, synchronous, electronically commutated permanent-magnet (ECM/PM) motor type is considerably higher compared to a conventional asynchronous squirrel-cage motor.

The PM motor is designed according to the canned-rotor principle. The design of the mechanical motor components has mainly focused on these features:

- robustness achieved through efficient protection of loaded components.
- simple design meaning as few components as possible, each with several functions.
- high efficiency due to permanent magnets and low-friction bearings.

The motor is cooled by the pumped medium which reduces the sound pressure level to a minimum. Being software-protected the pump requires no further motor protection.

Pump housing

As standard, the pump housing is available in electrocoated cast iron with threaded inlet and outlet ports. The pump housing is of the in-line type. The stainless-steel neck ring is pressed into the pump housing to minimise the amount of liquid running from the outlet side of the impeller to the inlet side.

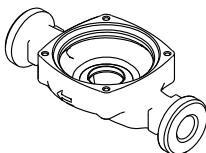


Fig. 14 Pump housing

Stator and windings

The WHM,WHML,WHMXL pumps have a three-phase stator. These pumps are designed for pumping very cold liquids (down to -10°C). In such applications, condensation may occur in the stator housing. To protect the stator, the copper wires are provided with reinforced insulation.

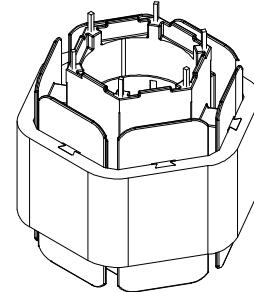


Fig. 8 Stator

Shaft with rotor

WHM shaft is made of SUS304,WHML,WHMXL shaft is made of ceramics. The rotor core is fitted with ferrite or neodymium permanent magnets. The rotor is encapsulated in a thin stainless-steel cladding welded to the end covers. To avoid precipitation of calcium in the radial bearings, the shaft has been plunge-ground at the journals. It has a through-going hole to ensure good lubrication and cooling of the upper bearing. Air in the rotor chamber escapes into the system through the through-going holes of the shaft.

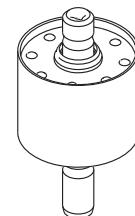


Fig. 9 Shaft with rotor

WHM,WHML,WHMXML

Rotor can

The drawn stainless-steel rotor can holds the ground and honed upper radial bearing at the top.

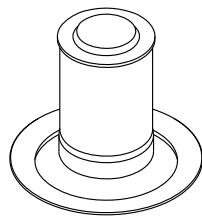


Fig. 10 Rotor can

Bearing plate

WHM,WHML,WHMXML bearing plate is made of stainless steel. The ground and honed inner radial bearing is pressed into the bearing plate. Thanks to the relatively large bearing plate surface, the motor heat is effectively carried away by the pumped medium.

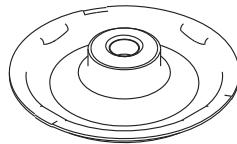


Fig. 11 Bearing plate

Thrust bearing

The thrust bearing is fitted to the shaft in a flexible suspension. In combination with the bearing plate, the thrust bearing prevents forces from being transmitted axially to rotor and rotor can.

Fig. 12 Thrust bearing

Impeller

The composite PES impeller is of the radial type with curved blades. The impeller is secured to the shaft with a split cone. The impeller, shaft with rotor and bearing plate are assembled in one unit to eliminate possible misalignment in the bearings.

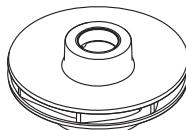


Fig. 13 Impeller

Control box

The control box is made of black composite material with an aluminium heat sink. It contains the PCBs for internal power supply and communication.

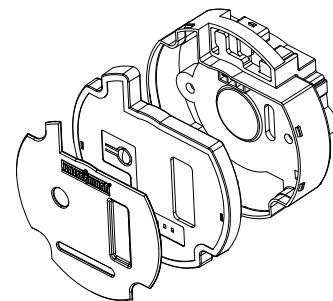
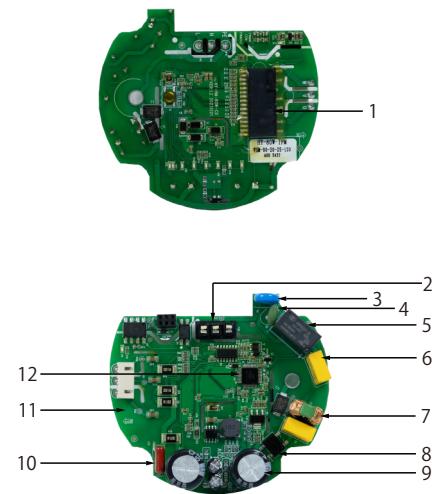



Fig. 15 Control box for WHM

Electronics certification

Pos	Object / part no.	Certificate approved
1	IPM / IGBT	UL
2	Terminal block	UL/RoHS/CE
3	Y capacitor	VDE
4	Varistor	VDE
5	Relay	VDE
6	X capacitor	VDE
7	WAVE FILER	
8	Opto-coupler	UL/VDE
9	Electrolytic capacitor	ENECL
10	Fuse	VDE/UL
11	PCB material	UL
12	MCU	

8. Installation

Installation must be carried out by trained persons in accordance with local regulations.

Pumped liquids

The pump must not be used for circulation of flammable liquids such as diesel oil and petrol.

Risk of malfunction or damage when inhibitors or additives are added to the pumped liquids.

WHM,WHML,WHMXML pumps are suitable for the following liquids:

- Clean, thin, non-aggressive and non-explosive liquids, not containing solid particles or fibres.
- In heating systems, the water must meet the requirements of accepted standards on water quality in heating systems.
- The pH must be between 8.2 and 9.5. The minimum value depends on the water hardness and must not be below 7.4 at 4°dH(0.712 mmol/l).
- The electrical conductivity at 25°C must be ≥ 10 microS/cm.
- For drinking water systems, approved housings must be used, such as stainless steel N and plastic P. These pumps and their components in contact with water are approved by WRAS(GB), ACS(FR), KTW(DE)and DIN DVGW W270 (DE).
- In domestic hot-water systems, the pump must be used only for water with a degree of temporary hardness of less than 3 mmol/l CaCO₃(16.8°dH). To avoid lime problems in hard waters, the medium temperature must not exceed 65°C.
- The water quality of test beds for the final production tests of complete heating appliances including pump must be observed to avoid calcification or biofilm formation during a longer storage period.
- Solar media as used in typical solar thermal systems containing up to 50 Vol % of antifreeze media.
- Mixtures of water with antifreeze media such as glycol or ethanol(down to -10°C with a validated temperature profile) with a kinematic viscosity lower than 15 mm²/s (15 cSt).

Antifreeze media containing glycol

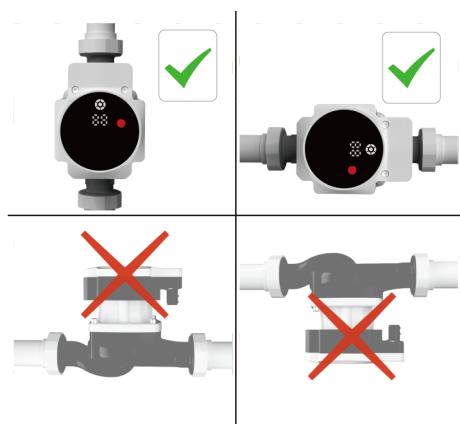
When selecting a pump, the viscosity of the pumped liquid must be taken into consideration. Depending on the type of glycol, the mixture and the liquid temperature, the viscosity increases differently compared to water as a medium. This will influence the pressure loss of the system as well as the efficiency, performance and load of the pump. As the pump is controlled by a power limitation function that protects against overload, the maximum curve might be lower.

Example:

If the water-glycol mixture is 50 % and the liquid temperature is +2°C the viscosity is 15 cSt: The maximum head falls 1.0 to 1.5m compared to 100 % water at 60°C(at the same flow). Performance curves measured with a medium containing glycol at higher viscosity than water are different from the water curves in this data booklet and can be taken into account by adding these mark-up factors to the required duty point:

Pumped liquid at -7°C	Viscosity [mm ² /s]	Density [kg/m ³]	H mark up [%]	Q mark up [%]	P mark up [%]
Ethylene glycol					
50 %	10.20	1083	7	10	18
30 %	5.18	1054	3	7	9
25 %	4.37	1046	2	5	8
Propylene glycol					
50 %	26.90	1056	14	15	19
30 %	9.71	1038	7	8	8
25 %	7.34	1033	4	5	7
Ethanol					
50 %	10.20	932	4	10	2
30 %	11.00	972	4	8	3
25 %	9.61	980	4	7	4

Mechanical installation must be carried out by trained persons in accordance with local regulations.


The pump must always be installed with horizontal motor shaft within $\pm 5^\circ$.

**Arrows on the pump housing indicate the liquid flow direction through the pump.
The pump is designed to be installed with horizontal shaft pumping upwards, downwards or horizontally.**

For mounting dimensions see the data sheets.

- The pump must be installed in the system in such a way that no major amount of air flowing through or gathering in the pump housing affects the pump when it is out of operation.
- If an additional non-return valve is installed in the flow pipe, there is a high risk of dry-running, because the air cannot pass the valve.
- It must be possible to vent the system at the highest part of each system segment.
- Permanent venting is recommended.

Fig. 16 Control box positions

Insulation

When insulating the pump, the control box (especially the cooling cover) must not be covered to allow cooling by the surrounding air.

If the pump is installed in a cabinet or fitted with insulation shells, the inside air temperature must not be higher than 55°C during operation. It must not cover the pump head.

Mechanical specifications

Ambient temperature

The ambient temperature must not exceed 55°C (near the pump surface).

Relative humidity

The relative humidity inside control box must not exceed 95 %. Condensation is acceptable if the cables on the control box point downwards.

Liquid temperature

- Max. 95°C at 55°C ambient temperature (continuously)
- Max. 110°C for short periods or at low load
- Min. -10°C (see validated temperature profile)

Note: For further lifetime evaluation the temperature profile must be defined.

System pressure

Max. 1.0 Mpa (10 bar) with cast iron or stainless steel housings.
Max. 0.6 Mpa (6 bar) with plastic housings.

Minimum inlet pressure

To avoid cavitation noise and damage to the pump bearings, the following minimum pressures are required at the inlet port.

Liquid temperatur	75°C	95°C	110°C
Minimum inlet pressure	0.01 Mpa 0.10 bar	0.05 Mpa 0.50 bar	0.10 Mpa 1.00 bar

Electrical installation

DANGER

Electric shock

- Death or serious personal injury
- Before starting any work at the pump, switch off the power supply. Make sure that the power supply cannot be switched on accidentally.

All electrical connections must be carried out by a qualified electrician in accordance with local regulations.

The pump is not a safety component and cannot be used to ensure functional safety in the final appliance.

- The pump requires no external motor protection.
- Check that the supply voltage and frequency correspond to the values stated on the nameplate.
- The pump must not be used with an external speed control which varies the supply voltage.
- If an earth leakage circuit breaker is used, check which type it is.
- If an external relay is used, check if it can stand the inrush current.

Supply voltage

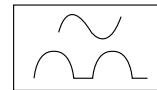
EU version: 1 x 230 V +10 %/- 15 %, 50/60 Hz.

The WHM,WHML,WHMXML pumps are externally controlled via PWM signal or internally speed-controlled by a frequency converter. Therefore, the pumps must not be used with an external speed control which varies the supply voltage, for example phase-cut or pulse- cascade control.

Reduced supply voltage

WHM,WHML,WHMXML with PWM control: If the voltage falls below the specified voltage range $\leq 155\text{VAC}$, a low voltage warning is sent via PWM return signal.

Earth leakage circuit breaker (ELCB)


DANGER

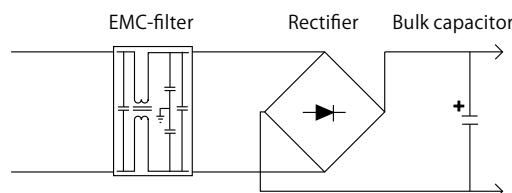
Electric shock

- Death or serious personal injury
- If national legislation requires a Residual Current Device(RCD) or equivalent in the electrical installation, this must be type A or better, according to the nature of the pulsating DC leakage current.

If the pump is connected to an electric installation that uses an earth leakage circuit breaker (ELCB) as additional protection, this circuit breaker must trip when earth fault currents with DC content (pulsating DC) occur.

The earth leakage circuit breaker must be marked with the first (type A) or both (type B) of the symbols shown below:

Fig. 17 Symbol on earth leakage circuit breaker


Leakage current

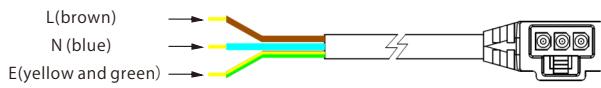
The pump mains filter causes a leakage current to earth during operation.

Leakage current: $< 3.5\text{ mA}$.

Inrush current

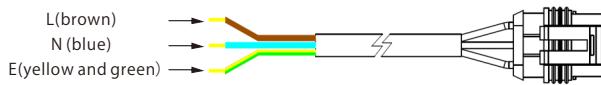
All electronic pumps contain electronic units that must be protected by filters including capacitors and ECM pumps frequency converters with AC/DC rectifiers containing capacitors to equalize the waves. This is not the case in most asynchronous pumps.

Fig. 18 Rectification of VAC voltage to DC voltage

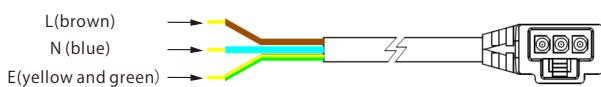

The load of electronically commutated motors(ECM) behaves as a capacitive load and not as a motor load like in a standard pump. At start the capacitor is unloaded. Hereby the amplitude of the current peak depends on the grid impedance until the capacitor is charged. The faster the capacitor is charged, the higher amplitude, and the faster the pump can be started. After this period of time, the current will drop to the rated current.

Definition: Inrush current is the current peak charging the capacitors in the electronics when the supply voltage is connected.

Power supply connection


1WHM Power plug with cable

1m, $3 \times 0.5 \text{ mm}^2$,PVC,VDE


2WHM Power plug with cable

1m, $3 \times 0.75 \text{ mm}^2$,PVC,VDE


2WHML,2WHMXL Power plug with cable

1m, $3 \times 0.75 \text{ mm}^2$,PVC,VDE

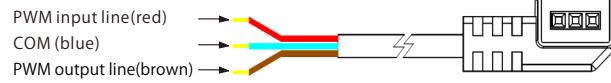
3WHML,3WHMXL Power plug with cable

1m, $3 \times 0.75 \text{ mm}^2$,PVC,VDE

Signal cable

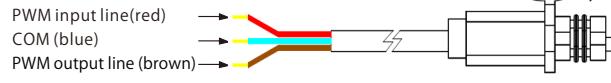
WHM AUTO, WHML AUTO, WHM XL AUTO pumps are internally speed-controlled and have no signal cable connection. We recommend to order these pump types with signal blind plug. WHM PWM, WHML PWM, WHM XL PWM pumps are externally speed-controlled.

To enable pump control, a signal cable is required, otherwise the pump always runs at maximum speed.

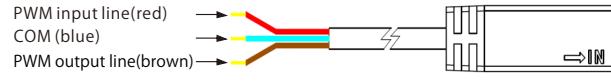


**SOLAR WHM,SOLAR WHML,SOLAR WHM XL
pumps do not run without signal
(PWM profile C for solar).**

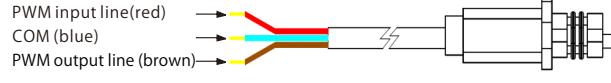
The signal cable has three leads, signal input, signal output and signal reference. The optional signal cable can be supplied with the pump as an accessory.


1WHM signal cable

0.55m, $3 \times 0.3 \text{ mm}^2$, PVC


2WHM signal cable

1m, $3 \times 0.3 \text{ mm}^2$, PVC


2WHML,2WHMXL signal cable

0.55m, $3 \times 0.3 \text{ mm}^2$, PVC

3WHML,3WHMXL signal cable

1m, $3 \times 0.3 \text{ mm}^2$, PVC

**Connect the signal wires to the correct poles.
Otherwise the pump might be damaged.**

PWM wiring diagram

No.	Signal	Function
1	PWM IN	Pump PWM input signal. Input PWM duty cycle range: 0~100%, input signal frequency range: 800Hz~4000Hz. Maximum input voltage range: 4~24V. Recommended external controller output high level: 4~10V, output low level: <1V
2	COM	PWM reference
3	PWM OUT	Pump PWM output signal. Output PWM duty cycle range: 0~100%, output signal frequency is 75Hz, collector output (i.e. OC gate output) transistor withstand voltage limit is 30V, the controller needs to connect a pull-up resistor to the power supply (such as 5V), recommended resistance value is 4.7k Ω . Otherwise, the upper computer will not receive the PWMOUT signal.

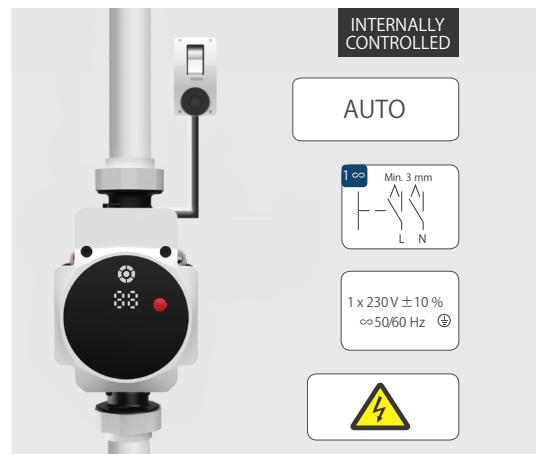
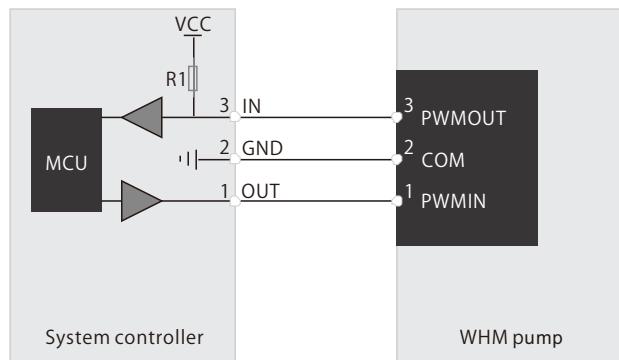



Fig. 19 Internally controlled

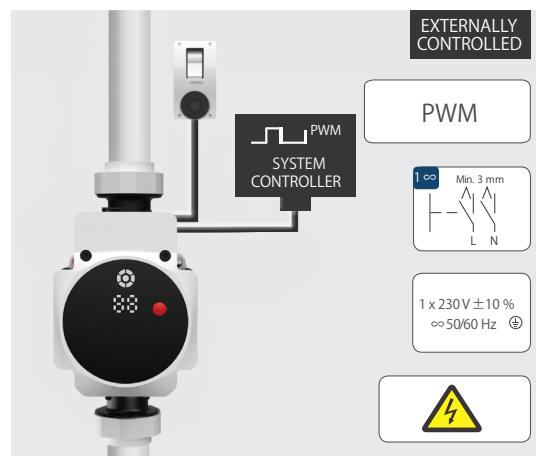


Fig. 20 Externally controlled

9. Startup

Before you start the WHM,WHML,WHMXML pump:

1. Mount the pump in the right way.
2. Check that the unions are tightened.
3. Check that the valves are opened.
4. Fill the system and vent it above the pump.
5. Check if the required minimum inlet pressure is available at the pump inlet.
6. Switch on the power supply.
7. If the pump is externally controlled: Check if the external controller sends a signal that controls the speed or that might have stopped the pump.
8. If the pump is internally controlled: The pump starts with factory presetting. Change the setting if necessary (see User interface).

Do not start the pump, until the system has been filled with liquid and vented.

WHM,WHML,WHMXML pumps are self-venting and do not have to be vented before startup. Air inside the pump is transported by the liquid into the system shortly after startup.

Hint for installers:

- Heating systems must be flushed before startup. After filling the system for the first time, the pump must run for approx. 1 hour before a long-term stop.
- Inhibitors and additives increase the risk of malfunction of the pump.
- If filters are installed, they must be monitored and maintained thoroughly.

Warning: This appliance can be used by children aged from 8 years and above and persons with reduced physical, sensory or mental capabilities or lack of experience and knowledge, if they have been given supervision or instruction concerning use of the appliance in a safe way and understand the hazards involved. Children shall not play with the appliance. Cleaning and user maintenance shall not be made by children without supervision.

10. Service

DANGER

Electric shock

- ▲ Death or serious personal injury
- Before starting any work at the pump, switch off the power supply. Make sure that the power supply cannot be switched on accidentally.
- Be aware that capacitors will be live up to 30 seconds after the power supply has been switched off.

DANGER

Electric shock

- ▲ Death or serious personal injury
- Before dismantling the complete pump set, switch off the power supply at least 5 minutes prior to commencing work and ensure that it cannot be switched on again unintentionally.

DANGER

Electric shock

- ▲ Death or serious personal injury
- When running in reverse, the pump acts as a generator and creates hazardous induction voltage at the motor terminals.
- Prevent the fluid from flowing back by closing the shut-offvalves.

WARNING

Strong magnetic field in the rotor area

- ▲ Danger of death for persons with pacemaker.
- Keep a safety distance of at least 0.3 m during disassembly.

WARNING

Toxic material

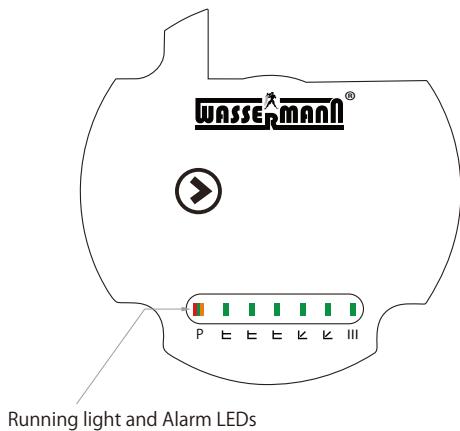
- ▲ Death or serious personal injury
- Decontaminate pumps which handle fluids posing a health hazard.

CAUTION

Hot surface

- ▲ Minor or moderate personal injury.
- Before starting to work on the pump, let the pump casing cool down to ambient temperature.

All service work must be carried out by an instructed service technician.

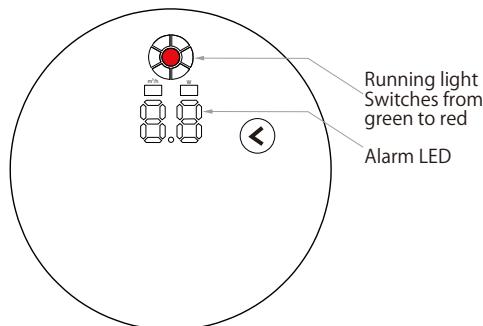

Before dismantling the pump, drain the system, or close the isolating valves on either side of the pump.

Cleaning

If the impeller or pump housing has to be cleaned from impurities, proceed as follows:

1. Drain the system or close the isolating valves.
—Be aware of hot water.
2. Remove the screws that hold the pump head.
3. Check impeller and pump housing and remove the impurities.
4. Place the pump head in the desired position, fit the screws and tighten the screws securely.

1WHM alarm type and display

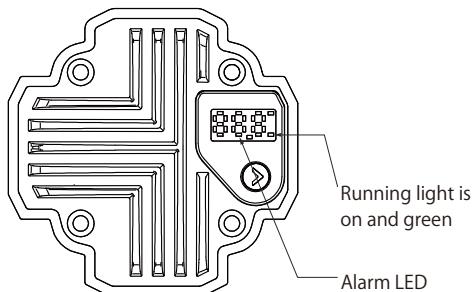

Operating panel	Alarm status
	Short circuit or water leakage in the coil
	The pump fails to start up due to idling
	Impeller or rotor is blocked by the water scale or the impurities
	Input voltage < 155VAC
	IPM is over heated,>103°C
	Input voltage > 290VAC

The operating panel is designed with one running light and six LED alarm lights.

If the circulator pump has detected one or more alarms or warnings, the running light switches from green to red, it indicates the type of alarm or warning.

If multiple alarms are activated simultaneously, the alarm LED only indicates the highest priority error. Priorities are defined according to these sequences in the table. When there are no active alarms, the user interface switches back to operating mode.

2WHM alarm type and display

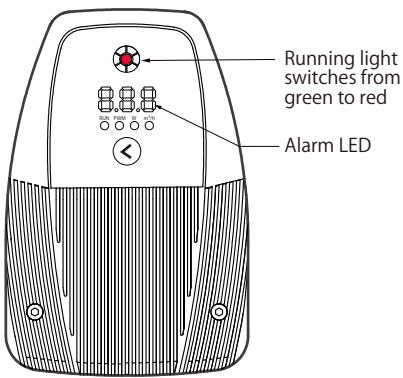

Operating panel	Fault description
E1	Short circuit or water leakage in the coil
E2	The pump fails to start up due to idling
E3	Impeller or rotor is blocked by the water scale or the impurities
E4	Input voltage < 155VAC
E5	IPM is over heated,>103°C
E6	Input voltage > 290VAC
E7	The pump is out of control, software abnormal
E8	UVW lack of phase

The operating panel is designed with one running light and one alarm LED window.

If the circulator pump has detected one or more alarms or warnings, the running light switches from green to red, it indicates the type of alarm or warning.

If multiple alarms are activated simultaneously, the alarm LED only indicates the highest priority error. Priorities are defined according to these sequences in the table. When there are no active alarms, the user interface switches back to operating mode.

2WHML,2WHMXML alarm type and display


Operating panel	Fault description
E01	Short circuit or water leakage in the coil
E02	The pump fails to start up due to idling
E03	Impeller or rotor is blocked by the water scale or the impurities
E04	Input voltage < 155VAC
E05	IPM is over heated,>103°C
E06	Input voltage > 290VAC
E07	The pump is out of control, software abnormal
E08	UVW lack of phase

The operating panel is designed with one running light and one alarm LED window.

If the circulator pump has detected one or more alarms or warnings, the running light switches from green to red, it indicates the type of alarm or warning.

If multiple alarms are activated simultaneously, the alarm LED only indicates the highest priority error. Priorities are defined according to these sequences in the table. When there are no active alarms, the user interface switches back to operating mode.

3WHML,3WHMXML alarm type and display

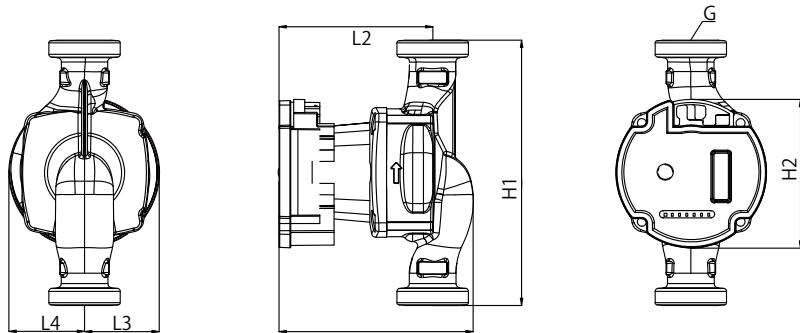
Operating panel	Fault description
E01	Short circuit or water leakage in the coil
E02	The pump fails to start up due to idling
E03	Impeller or rotor is blocked by the water scale or the impurities
E04	Input voltage < 155VAC
E05	IPM is over heated,>103°C
E06	Input voltage > 290VAC
E07	The pump is out of control, software abnormal
E08	UVW lack of phase

The operating panel is designed with one running light and one alarm LED window.

If the circulator pump has detected one or more alarms or warnings, the running light switches from green to red, it indicates the type of alarm or warning.

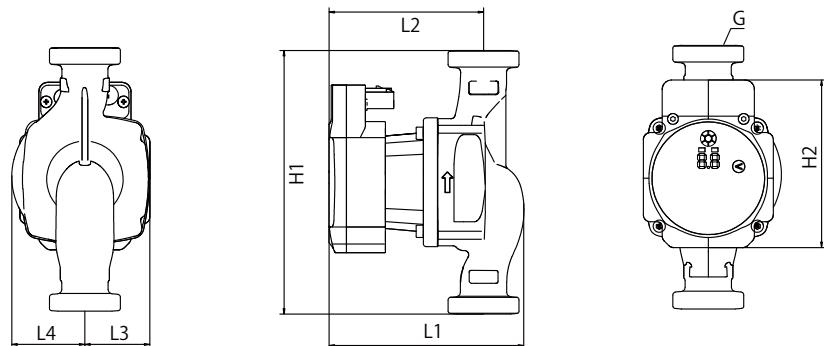
If multiple alarms are activated simultaneously, the alarm LED only indicates the highest priority error. Priorities are defined according to these sequences in the table. When there are no active alarms, the user interface switches back to operating mode.

Fault description

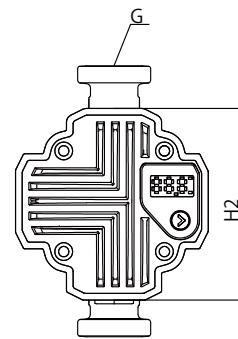
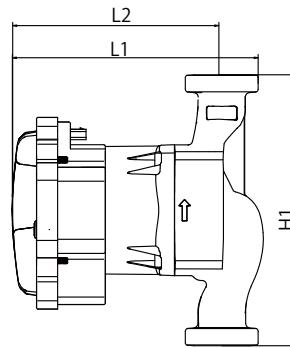
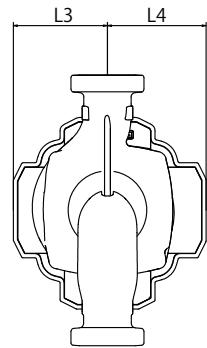

Fault	Description
Over current	The output current of the controller is too high, in order to avoid the damage to electronics, the controller will stop running. This fault is caused by 1. A short circuit in the motor coil, 2. Water leakage in the motor, 3. The controller is defective.
Startup failure	During the power on startup, the pump can not start smoothly, fails to startup or the speed is far below the set value. The cause of such failures can be 1. The controller is defective, 2. The pump is blocked by impurities.
Blocked	The rotation speed is far below the set value, it is considered that the pump is blocked. This type of fault is usually caused by the impeller being stuck by impurities or scale.
Under voltage	The current AC input voltage is too low (≤ 155 VAC), it causes the abnormal operation of the controller. When the voltage difference meets the minimum voltage value of the controller, the fault will be removed automatically and the pump will run in the mode before the shutdown.
Over heated	The temperature of the pump is too high ($> 103^{\circ}\text{C}$), the controller will stop the pump automatically. When the temperature drops to a certain level, the fault will be removed automatically and the pump will run in the mode before the shutdown.
Over voltage	The AC input voltage is too high (≥ 290 V), it causes the abnormal operation of the controller. When the voltage difference drops 5%, the fault will be removed automatically and the pump will run in the mode before the shutdown.

Fault finding

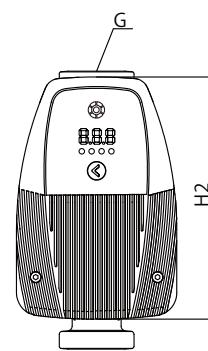
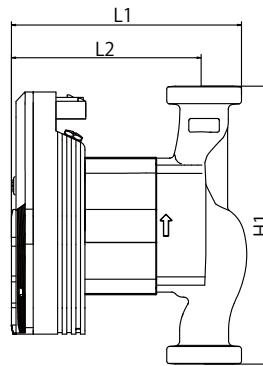
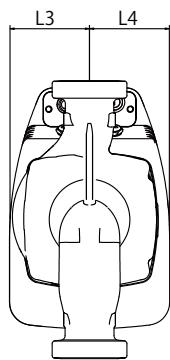
Fault	Cause	Remedy
	System is switched off.	Check the system controller.
1.Pump is not running. Nopower supply.	A fuse in the installation is blown.	Replace the fuse.
	The circuit breaker has tripped.	Check the power connection and switch on the circuit breaker.
	Power supply failure.	Check the power supply.
	Controller is switched off.	Check the controller and its settings.
2.Pump is not running. Normal power supply.	Pump is blocked by the impurities or water scale.	Unscrew the pump housing by M5 Hexagonal spanner, remove the impurities, or wash the rotor assembly.
	Pump is defective.	Replace the pump.
3.Pump runs at maximum speed and cannot be controlled.	No signal from signal cable.	Check if the cable is connected to the controller. If it is, replace the cable.
	There is air in the system.	Vent the system.
4.Noise in the system.	Differential pressure is too high.	Reduce the pump performance at the pump or external controller.
	There is air in the pump.	Let the pump run. The pump vents itself over time.
5.Noise in the pump.	Inlet pressure is too low.	Increase the system pressure or check the air volume in the expansion tank, if installed.
	Pump performance is too low.	Check the external controller and the pump settings.
6.Insufficient flow.	Hydraulic system is closed or system pressure is insufficient.	Check the non-return valve and filter. Increase the system pressure.


11. Product Dimension Drawing

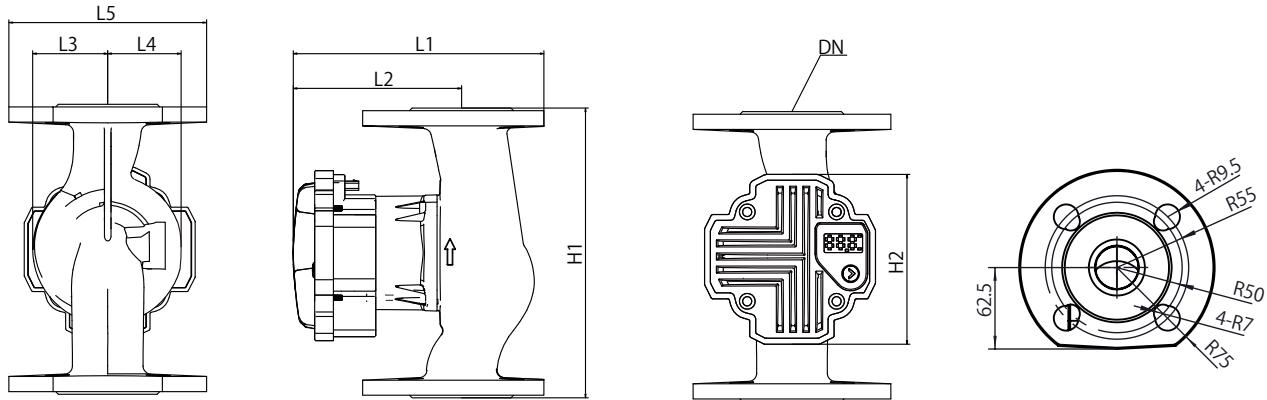
1WHM Dimensions




PUMP type	Dimensions [mm]						
	L1	L2	L3	L4	H1	H2	G
WHM 20-xx/130	129	92	52	55	130	101	G1
WHM 25-xx/130	129	92	52	55	130	101	G1 1/2
WHM 25-xx/180	131	104	52	55	180	101	G1 1/2
WHM 32-xx/180	131	104	52	55	180	101	G2

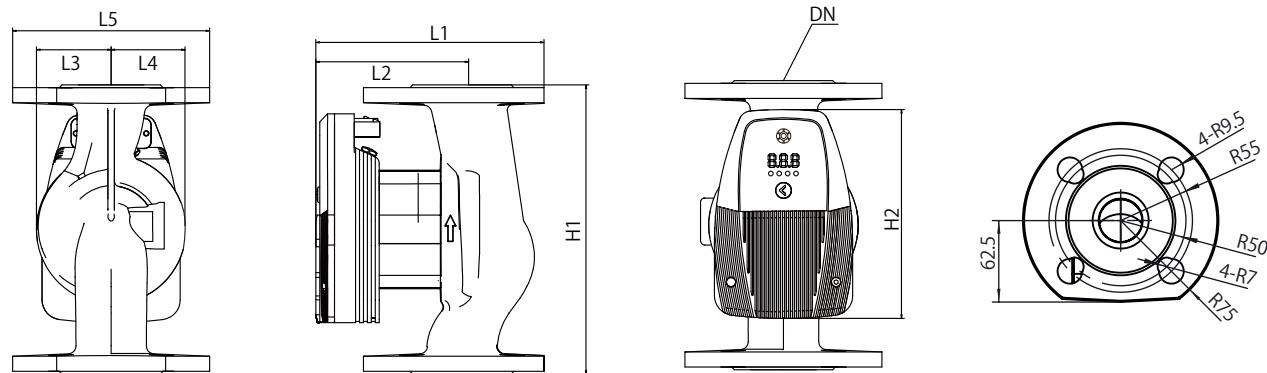
2WHM Dimensions




PUMP type	Dimensions [mm]						
	L1	L2	L3	L4	H1	H2	G
WHM 20-xx/130	129	92	45	45	130	117	G1
WHM 25-xx/130	129	92	45	45	130	117	G1 1/2
WHM 25-xx/180	131	104	45	50	180	117	G1 1/2
WHM 32-xx/180	131	104	45	50	180	117	G2

2WHML,2WHMXL Dimensions


PUMP type	Dimensions[mm]						
	L1	L2	L3	L4	H1	H2	G
WHML 25-xx/130	162	139	63	66	131	129	G1 1/2
WHML 25-xx/180	165	138	63	66	182	129	G1 1/2
WHML 32-xx/180	153	123.5	64	65	180	129	G2
WHMXL 25-xx/180	165	138	63	66	182	129	G1 1/2
WHMXL 32-xx/180	153	123.5	64	65	180	129	G2

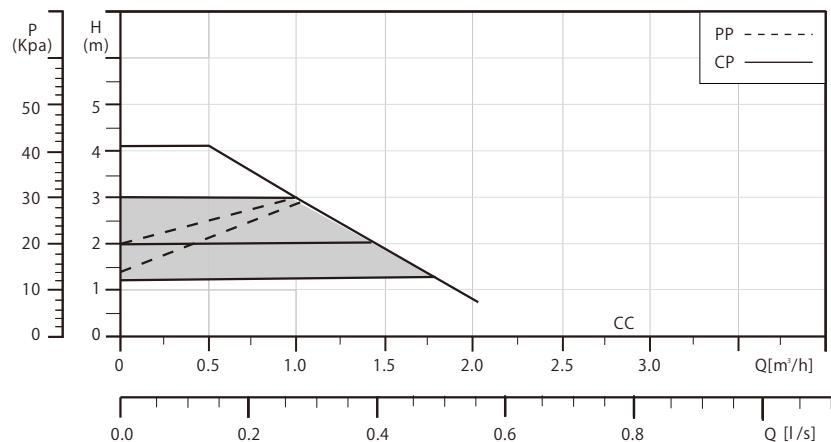
3WHML,3WHMXL Dimensions


PUMP type	Dimensions[mm]						
	L1	L2	L3	L4	H1	H2	G
WHML 25-xx/130	148	125	51	52	130	159	G1 1/2
WHML 25-xx/180	151	124	52	52	182	159	G1 1/2
WHML 32-xx/180	151	121.5	56	56	180	159	G2
WHMXL 25-xx/180	151	124	52	52	182	159	G1 1/2
WHMXL 32-xx/180	151	121.5	56	56	180	159	G2

2WHMXL/F Dimensions

PUMP type	Dimensions[mm]							
	L1	L2	L3	L4	L5	H1	H2	DN
WHMXL 32-xx F/220	190	127	57	57	150	220	129	DN32
WHMXL 40-xx F/250	190	128	57	57	150	250	129	DN40

3WHMXL/F Dimensions

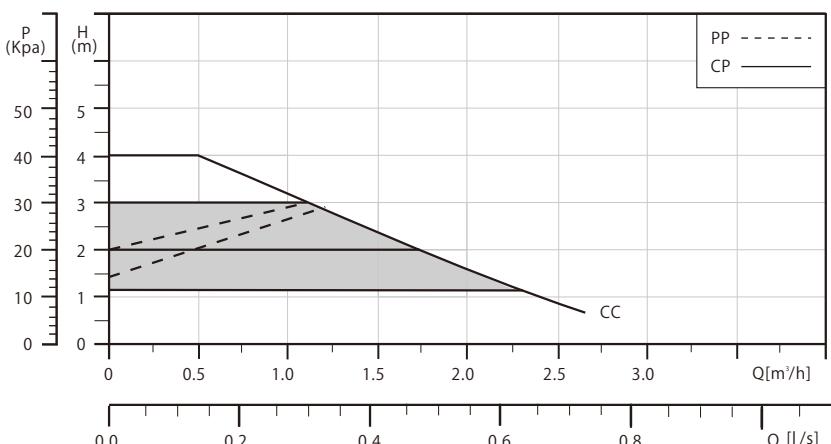

PUMP type	Dimensions[mm]							
	L1	L2	L3	L4	L5	H1	H2	DN
WHMXL 32-xx F/220	173	116	57	57	150	220	159	DN32
WHMXL 40-xx F/250	176	117	57	57	150	250	159	DN40

12. Data sheets

WHM AUTO series 1×230 V, 50/60 Hz

Pump Curve

WHM 20-40 AUTO


EEI≤0.20

Mode	Max. head
CP1	1.2m
CPA	2.1m
CP2	3m
PP1	2.8m
PP2	3m
CC	4m

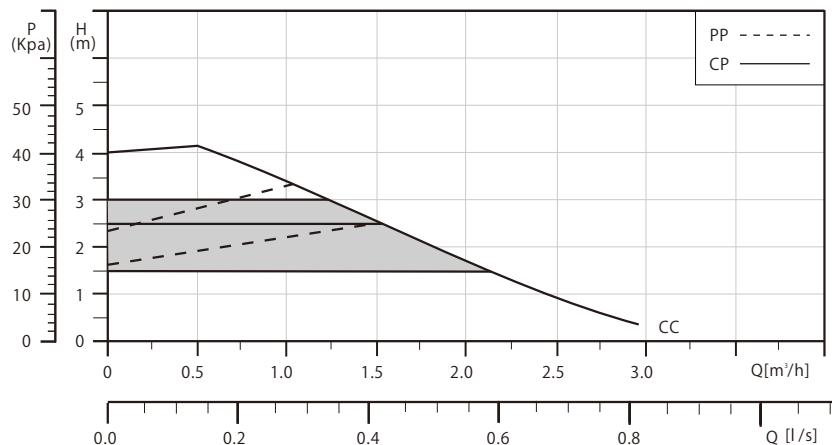
Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	5	0.04
Max	30	0.28

WHM 25-40 AUTO

EEI≤0.20

Mode	Max. head
CP1	1.2m
CPA	2.1m
CP2	3m
PP1	2.8m
PP2	3m
CC	4m

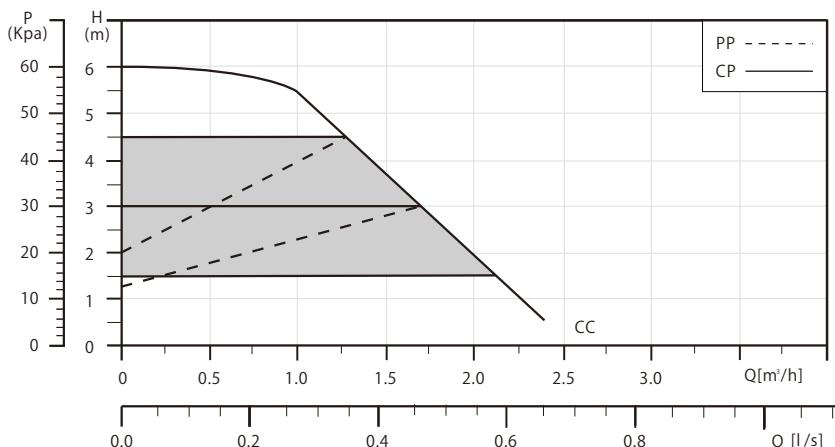

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	5	0.04
Max	30	0.28

WHM AUTO series 1×230 V, 50/60 Hz

Pump Curve

WHM32-40 AUTO


EEI≤0.20

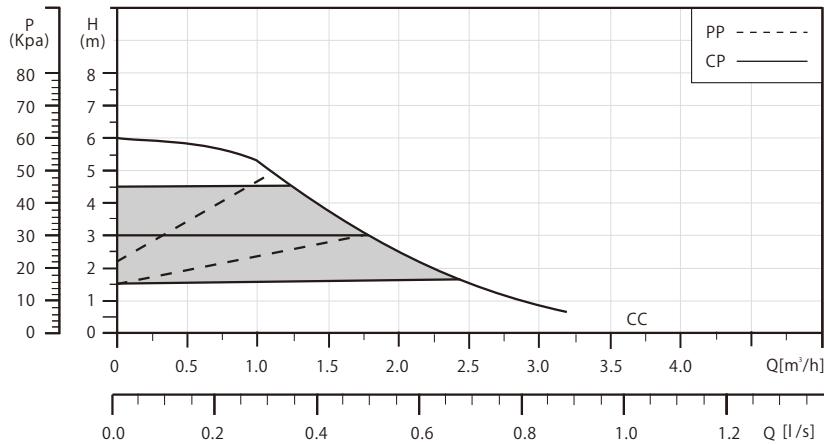
Mode	Max. head
CP1	1.5m
CPA	2.5m
CP2	3m
PP1	2.5m
PP2	3.5m
CC	4m

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	5	0.04
Max	30	0.28

WHM 20-60 AUTO

EEI≤0.20

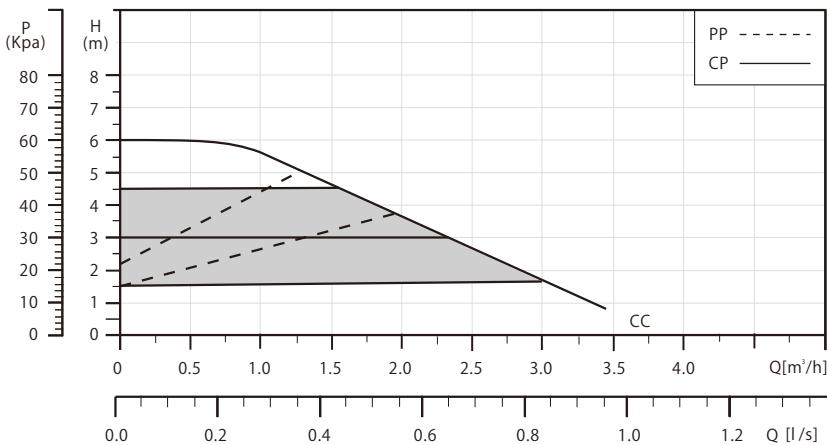

Mode	Max. head
CP1	1.5m
CPA	3m
CP2	4.5m
PP1	3m
PP2	4.5m
CC	6m

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	5	0.04
Max	50	0.46

WHM AUTO series 1×230 V, 50/60 Hz**Pump Curve**

WHM 25-60 AUTO


EEI≤0.20

Mode	Max. head
CP1	1.5m
CPA	3m
CP2	4.5m
PP1	3m
PP2	5m
CC	6m

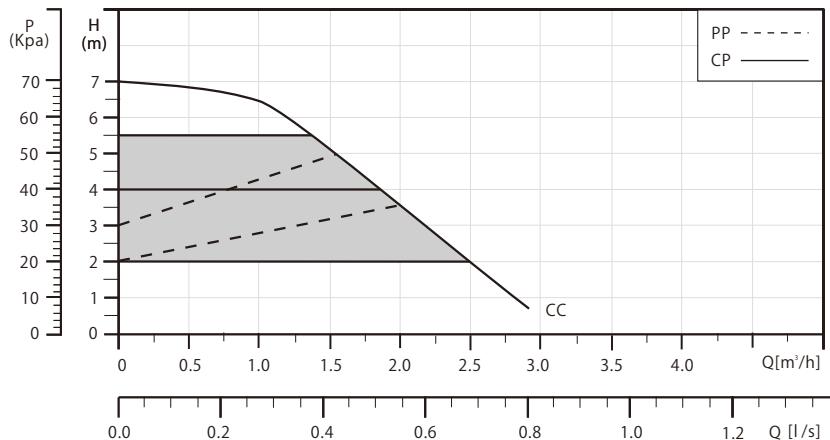
Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	5	0.04
Max	50	0.46

WHM 32-60 AUTO

EEI≤0.20

Mode	Max. head
CP1	1.5m
CPA	3m
CP2	4.5m
PP1	3.8m
PP2	5m
CC	6m

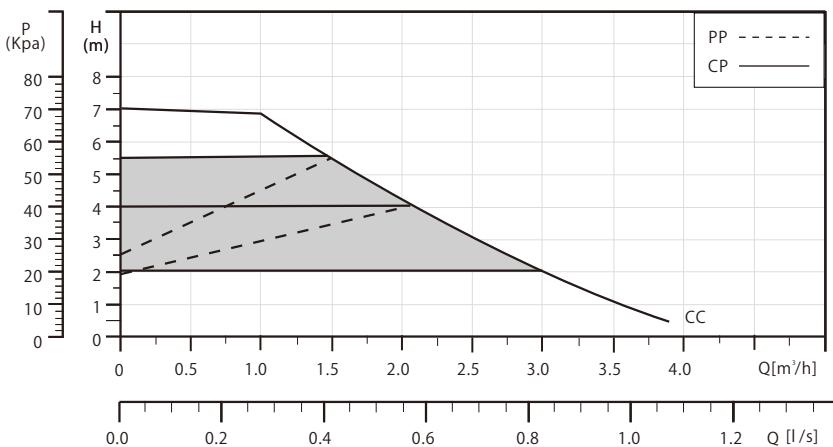

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	5	0.04
Max	50	0.46

WHM AUTO series 1×230 V, 50/60 Hz

Pump Curve

WHM 20-70 AUTO


EEI≤0.20

Mode	Max. head
CP1	2m
CPA	4m
CP2	5.5m
PP1	3.5m
PP2	5m
CC	7m

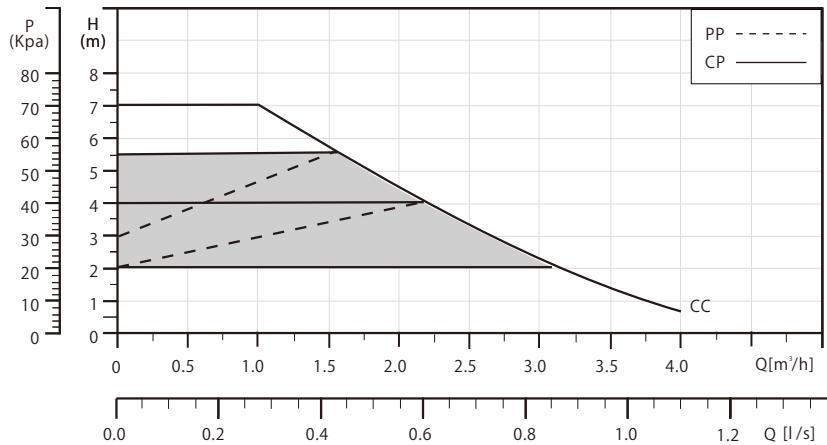
Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	5	0.04
Max	60	0.53

WHM 25-70 AUTO

EEI≤0.20

Mode	Max. head
CP1	2m
CPA	4m
CP2	5.5m
PP1	4m
PP2	5.5m
CC	7m

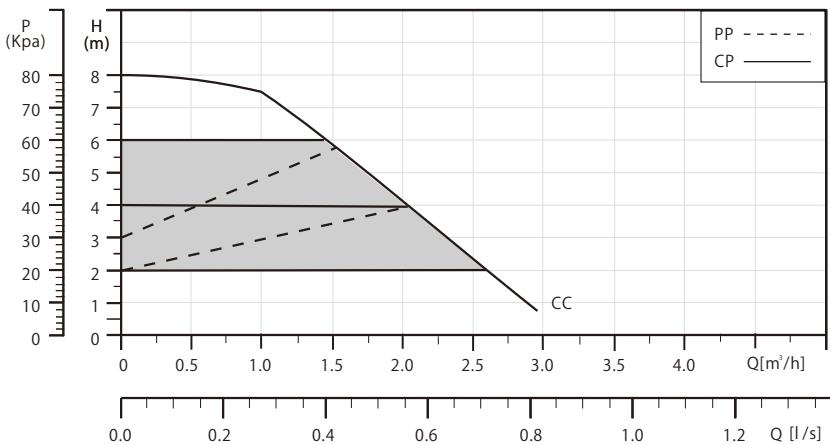

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	5	0.04
Max	60	0.53

WHM AUTO series 1×230 V, 50/60 Hz

Pump Curve

WHM 32-70 AUTO


EEI≤0.20

Mode	Max. head
CP1	2m
CPA	4m
CP2	5.5m
PP1	4m
PP2	5.5m
CC	7m

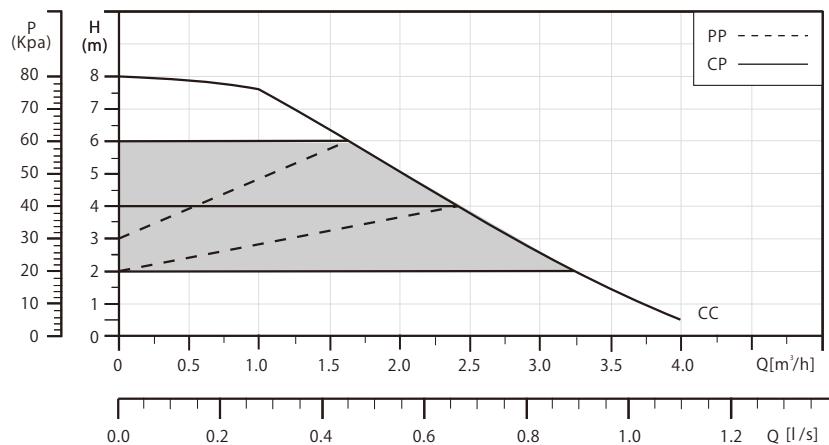
Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	5	0.04
Max	60	0.53

WHM 20-80 AUTO

EEI≤0.20

Mode	Max. head
CP1	2m
CPA	4m
CP2	6m
PP1	4m
PP2	5.8m
CC	8m

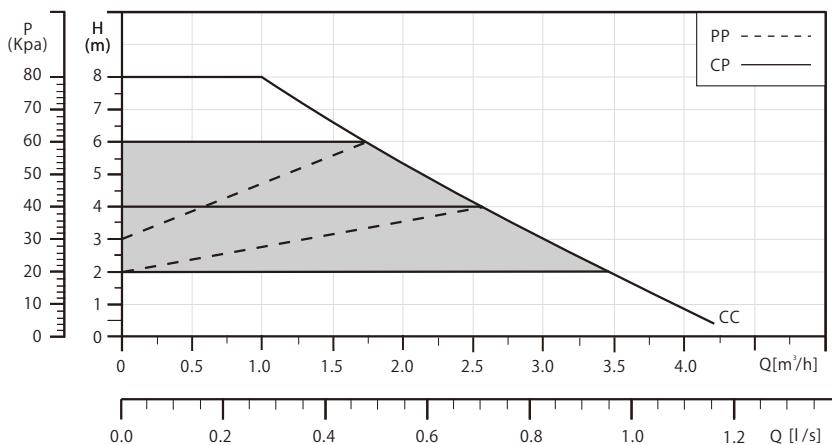

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	10	0.10
Max	70	0.65

WHM AUTO series 1×230 V, 50/60 Hz

Pump Curve

WHM 25-80 AUTO


EEI≤0.20

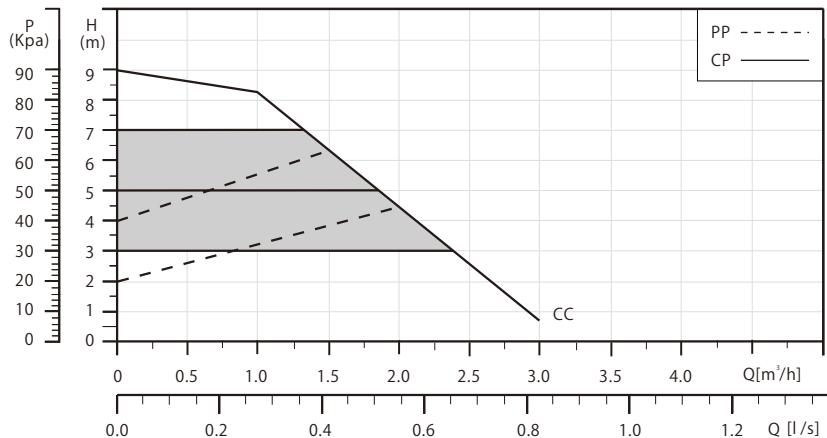
Mode	Max. head
CP1	2m
CPA	4m
CP2	6m
PP1	4m
PP2	6m
CC	8m

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	10	0.10
Max	70	0.65

WHM 32-80 AUTO

EEI≤0.20

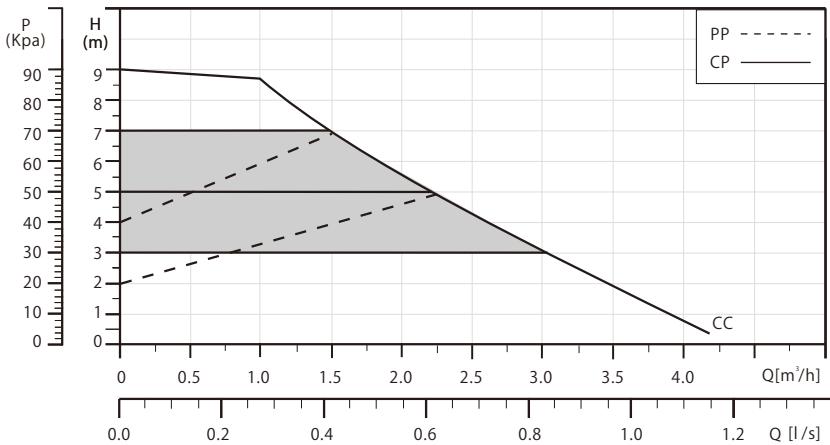

Mode	Max. head
CP1	2m
CPA	4m
CP2	6m
PP1	4m
PP2	6m
CC	8m

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	10	0.10
Max	70	0.65

WHM AUTO series 1×230 V, 50/60 Hz**Pump Curve**

WHM 20-90 AUTO


EEI≤0.20

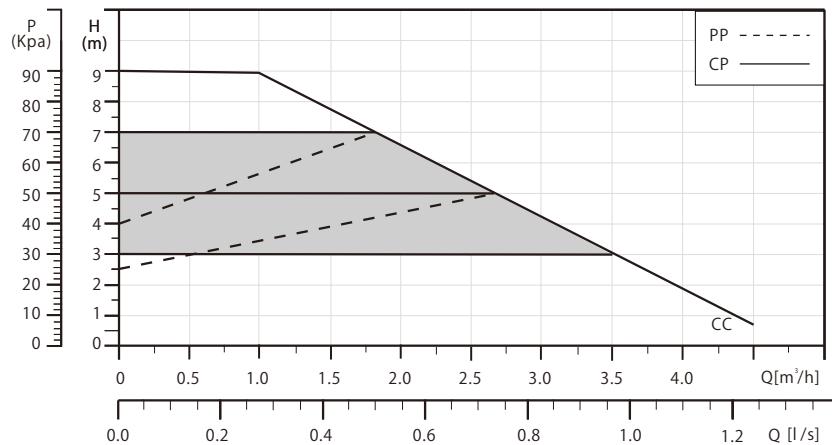
Mode	Max. head
CP1	3m
CPA	5m
CP2	7m
PP1	4.5m
PP2	6.5m
CC	9m

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	10	0.10
Max	80	0.70

WHM 25-90 AUTO

EEI≤0.20


Mode	Max. head
CP1	3m
CPA	5m
CP2	7m
PP1	5m
PP2	7m
CC	9m

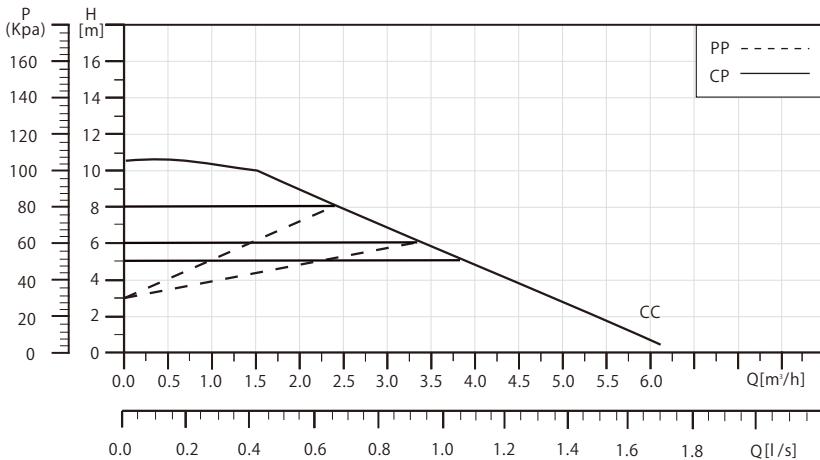
Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	10	0.10
Max	80	0.70

WHM AUTO series 1×230 V, 50/60 Hz**Pump Curve**

WHM 32-90 AUTO

Mode	Max. head
CP1	3m
CPA	5m
CP2	7m
PP1	5m
PP2	7m
CC	9m

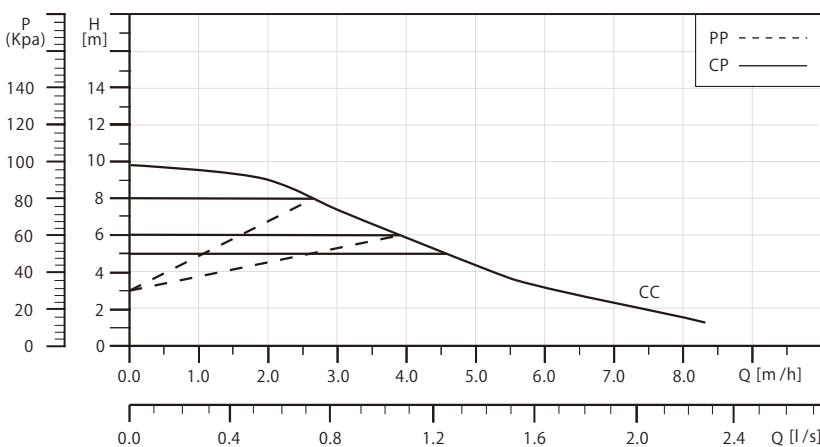

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	10	0.10
Max	80	0.70

WHML AUTO series 1×230 V, 50/60 Hz

Pump Curve

WHML 25-105 AUTO


EEI≤0.23

Mode	Max. head
CP1	5m
CP2	6m
CP3	8m
PP1	6m
PP2	8m
CC	10.5m

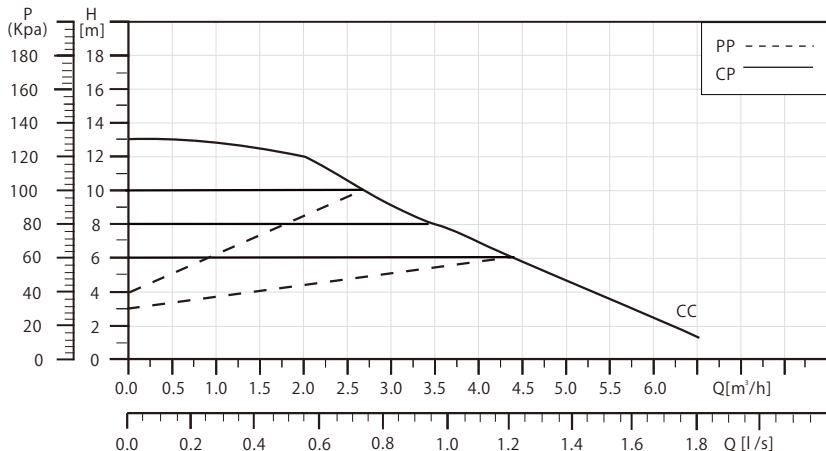
Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	20	0.25
Max	140	1.10

WHML 32-105 AUTO

EEI≤0.23

Mode	Max. head
CP1	5m
CP2	6m
CP3	8m
PP1	6m
PP2	8m
CC	10m

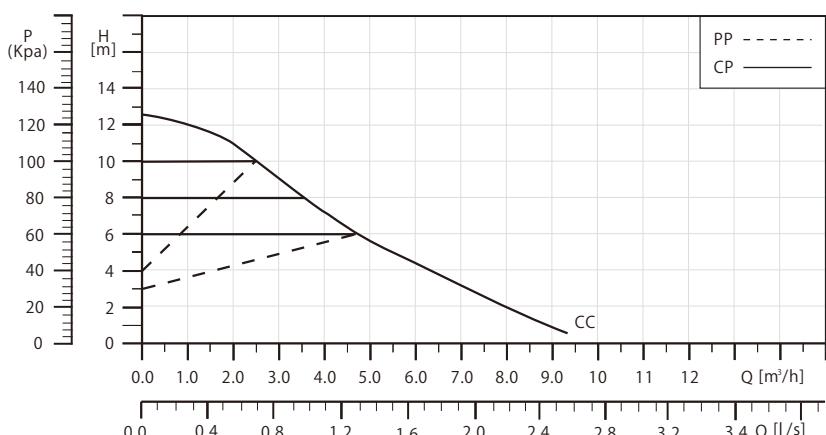

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	20	0.25
Max	140	1.10

WHML AUTO series 1×230 V, 50/60 Hz

Pump Curve

WHML 25-125 AUTO


EEI≤0.23

Mode	Max. head
CP1	6m
CP2	8m
CP3	10m
PP1	6m
PP2	10m
CC	12.5m

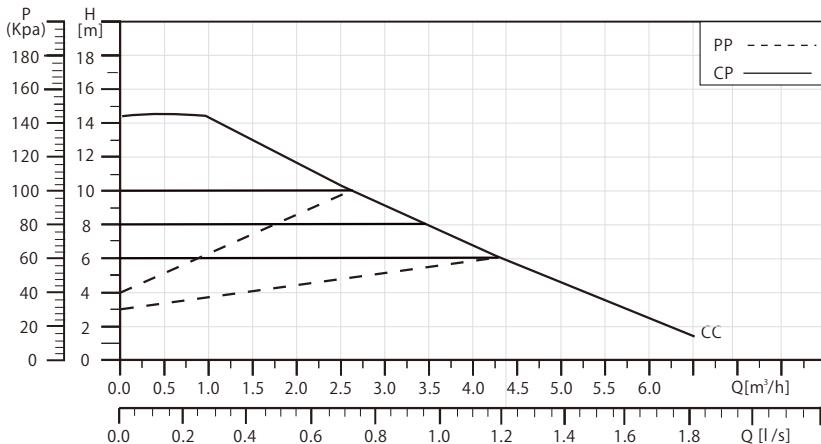
Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	22	0.29
Max	190	1.50

WHML 32-125 AUTO

EEI≤0.23

Mode	Max. head
CP1	6m
CP2	8m
CP3	10m
PP1	6m
PP2	10m
CC	12.5m

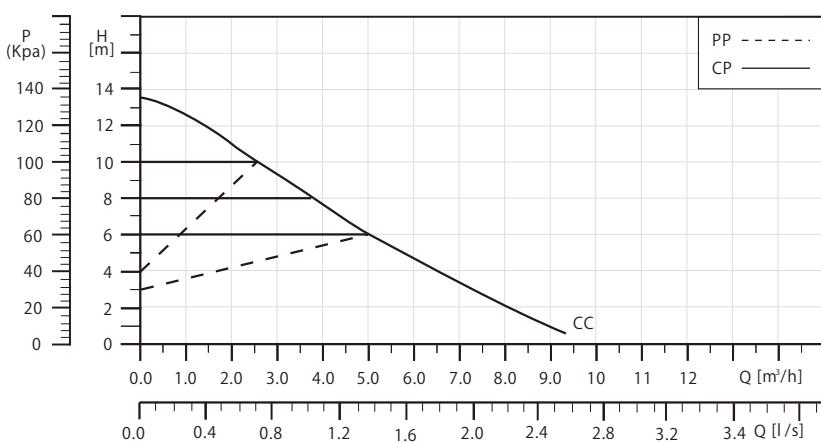

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	22	0.29
Max	190	1.50

WHML AUTO series 1×230 V, 50/60 Hz

Pump Curve

WHML 25-140 AUTO


EEI≤0.23

Mode	Max. head
CP1	6m
CP2	8m
CP3	10m
PP1	6m
PP2	10m
CC	14m

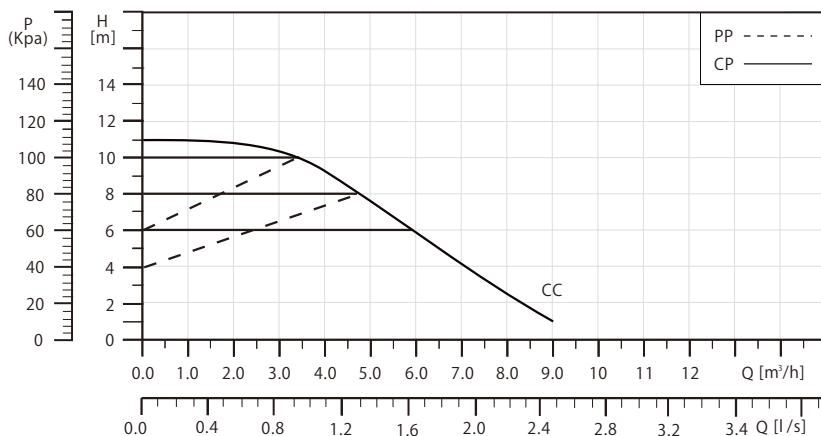
Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	22	0.29
Max	190	1.50

WHML 32-140 AUTO

EEI≤0.23

Mode	Max. head
CP1	6m
CP2	8m
CP3	10m
PP1	6m
PP2	10m
CC	14m

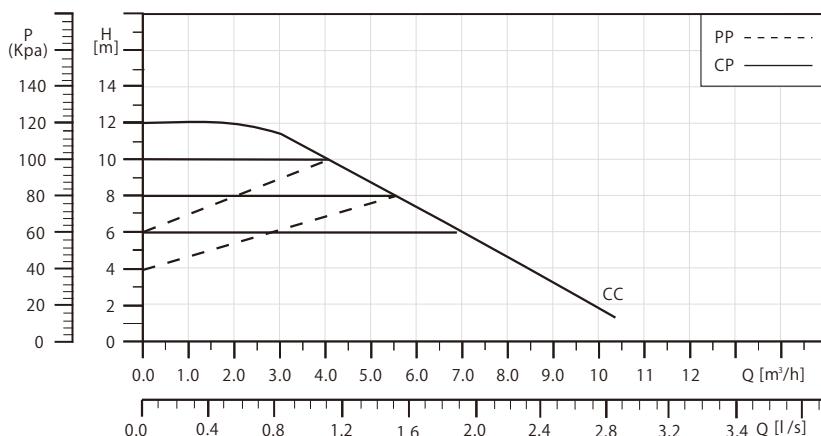

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	22	0.29
Max	190	1.50

WHMXL AUTO series 1×230 V, 50/60 Hz

Pump Curve

WHMXL 25-110 AUTO


EEI≤0.23

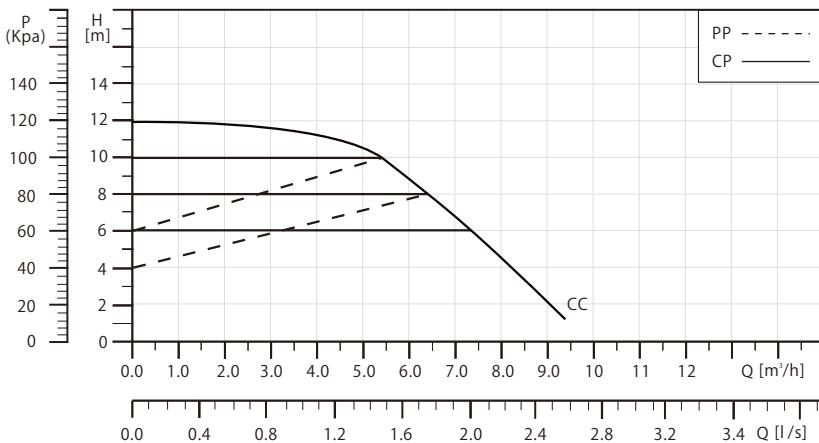
Mode	Max. head
CP1	6m
CP2	8m
CP3	10m
PP1	8m
PP2	10m
CC	11m

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	27	0.35
Max	250	2.50

WHMXL 32-110 AUTO

EEI≤0.23

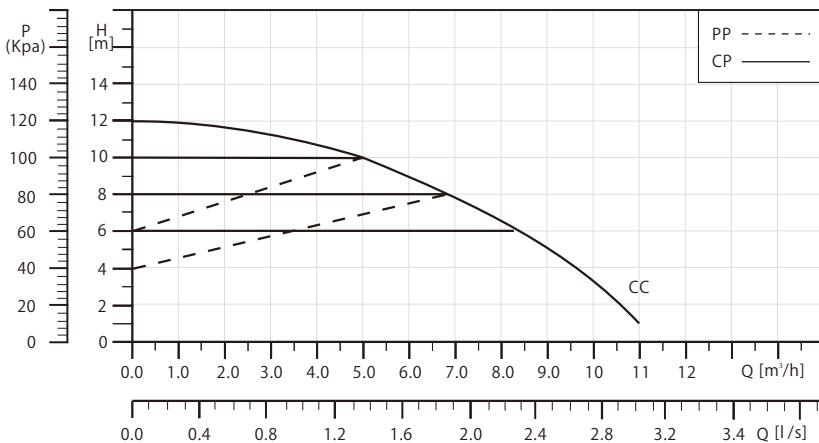

Mode	Max. head
CP1	6m
CP2	8m
CP3	10m
PP1	8m
PP2	10m
CC	12m

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	27	0.35
Max	250	2.50

WHMXL AUTO series 1×230 V, 50/60 Hz**Pump Curve**

WHMXL 25-120 AUTO


EEI≤0.23

Mode	Max. head
CP1	6m
CP2	8m
CP3	10m
PP1	8m
PP2	10m
CC	12m

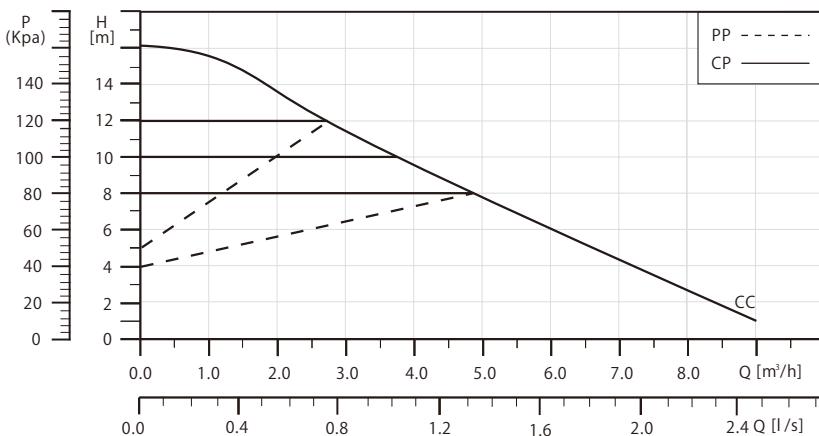
Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	27	0.35
Max	350	3.00

WHMXL 32-120 AUTO

EEI≤0.23

Mode	Max. head
CP1	6m
CP2	8m
CP3	10m
PP1	8m
PP2	10m
CC	12m

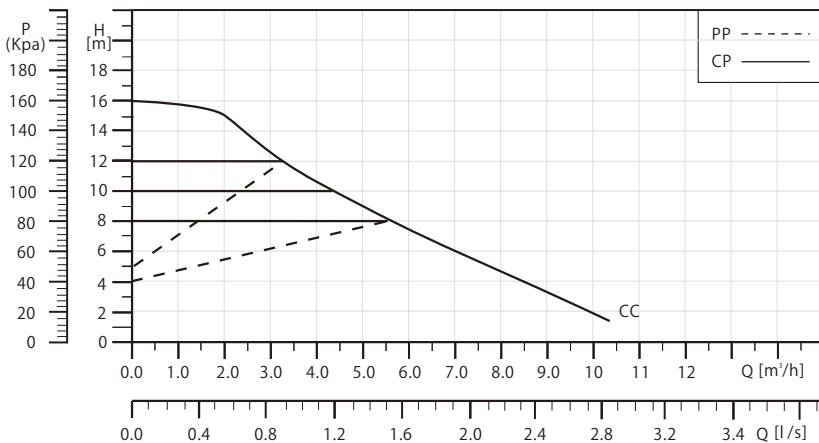

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	27	0.35
Max	350	3.00

WHMXL AUTO series 1×230 V, 50/60 Hz

Pump Curve

WHMXL 25-160 AUTO


EEI≤0.23

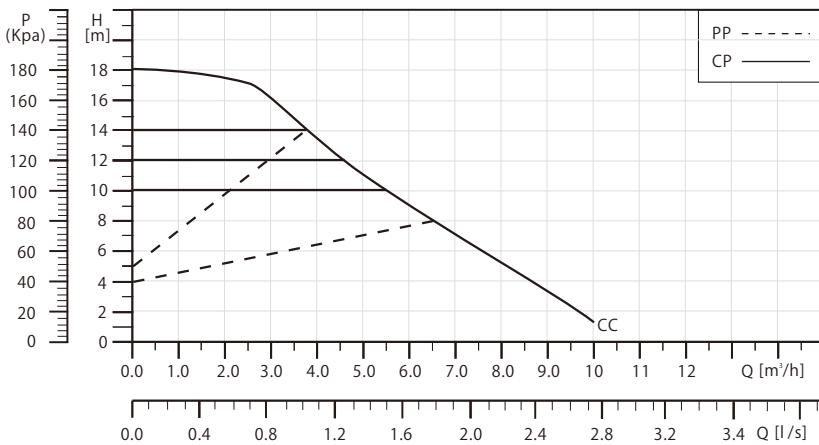
Mode	Max. head
CP1	8m
CP2	10m
CP3	12m
PP1	8m
PP2	12m
CC	16m

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	27	0.35
Max	250	2.50

WHMXL 32-160 AUTO

EEI≤0.23

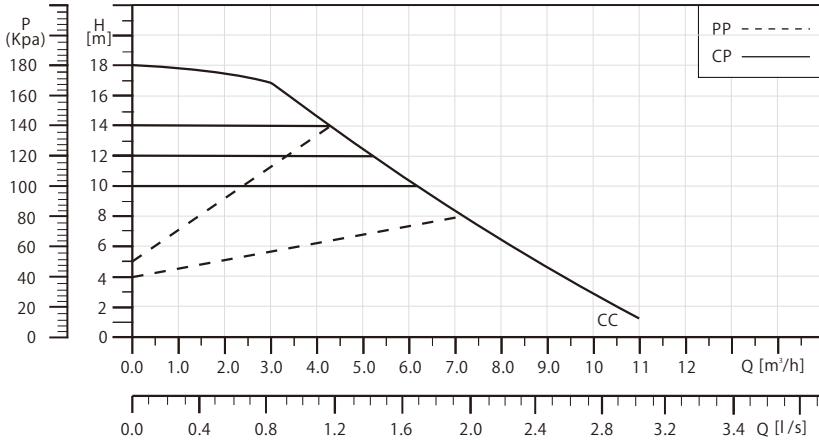

Mode	Max. head
CP1	8m
CP2	10m
CP3	12m
PP1	8m
PP2	12m
CC	16m

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	27	0.35
Max	250	2.50

WHMXL AUTO series 1×230 V, 50/60 Hz**Pump Curve**

WHMXL 25-180 AUTO


EEI≤0.23

Mode	Max. head
CP1	10m
CP2	12m
CP3	14m
PP1	8m
PP2	14m
CC	18m

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	27	0.35
Max	350	3.00

WHMXL 32-180 AUTO

EEI≤0.23

Mode	Max. head
CP1	10m
CP2	12m
CP3	14m
PP1	8m
PP2	14m
CC	18m

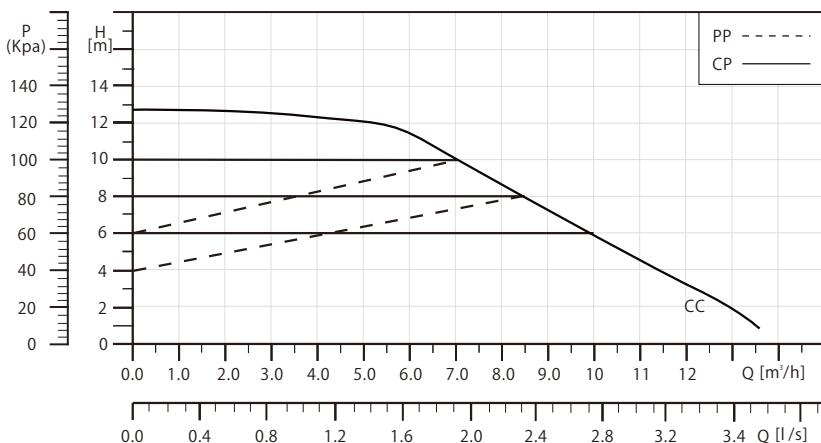
Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	27	0.35
Max	350	3.00

WHMXL AUTO series 1×230 V, 50/60 Hz

Pump Curve

WHMXL 32-120F/220 AUTO


EEI≤0.23

Mode	Max. head
CP1	6m
CP2	8m
CP3	10m
PP1	8m
PP2	10m
CC	12m

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	27	0.35
Max	350	3.00

WHMXL 40-120F/250 AUTO

EEI≤0.23

Mode	Max. head
CP1	6m
CP2	8m
CP3	10m
PP1	8m
PP2	10m
CC	12m

Electrical data, 1 x 230 V, 50 Hz

Speed	P ₁ [W]	I _{1/1} [A]
Min	40	0.5
Max	400	3.5

The pumps are in compliance with the following standards

Low Voltage Directive (2014/35/EU)

Standards used:

- EN 60335-1:2012 + AC:2014 + A11:2014 + A13:2017 + A1:2019 + A14:2019 + A2:2019 + A15:2021
- EN 60335-2-51:2003 + A1:2008+A2:2012

EMC Directive (2014/30/EU)

Standards used:

- EN 55014-1:2017
- EN 55014-2:2015
- EN 61000-3-2:2014
- EN 61000-3-3:2013

RoHS Directive (2011/65/EU) and (2015/863/EU)

Standards used:

- EN IEC 63000:2018

Eco design Directive (2009/125/EC)

Commission Regulation (EC)

No 641/2009

Commission Regulation (EC)

No 622/2012

Standards used:

- EN 16297-1:2012
- EN 16297-2:2012
- EN 16297-3:2012

EEI \leq 0.20 (see individual data sheet or name plate).